
1st Joint International Symposium on System-Integrated Intelligence 2012:
New Challenges for Product and Production Engineering
Data Processing and Communication in Distributed Low-power Sensor Networks us-
ing Multi-agent Systems

Stefan Bosse1,3, Florian Pantke2,3, Frank Kirchner1,3
1 University of Bremen, Department of Computer Science, Workgroup Robotics
2 TZI - Center for Computing and Communication Technologies, University of Bremen
3 ISIS Sensorial Materials Scientific Centre, Bremen

Summary: We propose and compare two different data processing and communication architectures for the implementation of mobile agents in sensor
networks consisting of single microchip low-resource nodes.

Keywords: Sensor networks, Distributed Data Processing, Agent, Computer Architecture, Communication, Single-System-on-Chip, High-Level Synthesis

1. Introduction

Recently emerging trends in engineering and micro-system
applications such as the development of sensorial materials show
a growing demand for autonomous networks of miniaturized
smart sensors and actuators embedded in technical structures [6].
With increasing miniaturization and sensor-actuator density, de-
centralized network and data processing architectures are pre-
ferred or required. A multi-agent system is used for a
decentralized and self-organizing approach of data processing in
a distributed system like a sensor network, enabling the mapping
of distributed data sets to related information, for example, re-
quired for object manipulation with a robot manipulator.
Traditionally, mobile agents are executed on generic computer
architectures [7][8], which usually cannot easily be reduced to
single-chip systems like they are required, e.g., in sensorial ma-
terials with high sensor node densities.

We propose and compare two different data processing and
communication architectures for the implementation of mobile
agents in sensor networks consisting of single microchip low-re-
source nodes.

The distributed programming model of mobile agents has the
advantage of simplification and reduction of synchronization
constraints owing to the autonomy of agents.

2. Distributed Data Processing with State-based Agents

Initially, a sensor network is a collection of independent com-
puting nodes. Interaction between nodes is required to manage
and distribute data and computed information. One common in-
teraction model is the mobile agent. An agent is capable of auton-
omous action in an environment with the goal to meet its
delegated objectives. An agent is a data processing system, a pro-
gram executed on a computer system, that is situated in this envi-
ronment [1]. A multi-agent system is a collection of loosely
coupled autonomous agents migrating through the network.
Agents can be used in sensor networks for
ä Sensor data processing and extraction
ä Sensor data fusion, filtering, and reduction of sensor data to

information in a region of interest
ä Sensor data and information distribution and transport
ä Global energy management, exploration and negotiation

Agents can operate state-based. An agent consists of a state,
holding data variables and the control state, and a reasoning en-
gine, implementing behaviours and actions. In this proposed data
processing and communication architecture, the state of an agent
is completely kept in messages transferred in the network provid-
ing agent mobility. The functional behaviour of an agent is imple-
mented statically with a finite-state machine part of the local data
processing system on register-transfer level (RTL).

Figure. 1. State-based agents and interaction with environ-
ment.
Agents record information about the environment state e∈E

and history. Let I be the set of all internal states of the agent. An
agent's decision-making process is based on this information. The
perception function see maps environment states to perceptions,
function next maps an internal state and percept to an internal
state, the action-selection function action maps internal states to
actions (see also Fig. 1):

see : E → Per
next : I × Per → I
action : I → Act

3. Approach I: Message-Based/State Machine Agent Imple-
mentation

Figure 2 shows the proposed execution environment used for
the data processing agents. There is a message module imple-
menting smart delta-distance routing of messages [2], providing

��������	�

��	�

��

����

������

�
	
Reference: S. Bosse, F. Pantke, F. Kirchner, Data Processing and Communication in Distributed Low-power Sensor Networks using Multi-
agent Systems, 1st Joint Symposium on System-integrated Intelligence: New Challenges for Product and Production Engineering, Special
Session Enabling Technologies for Sensorial Materials – Taking sensor integration, June 27th – 29th 2012: Hannover, Germany

[SYSINT12A]
Page 1

some kind of fault-tolerance regarding interconnect failures, and
several finite-state machines implementing the agent behaviours
and providing virtual machines able to process incoming agents.
All parts are mappable to digital logic on RTL and single-SoC
system architecture, a prerequisite for miniaturized sensor nodes
embedded in structures and sensorial materials. The functional
agent behaviour is implemented with a (non-mobile) finite state
machine (virtual machine) built in the sensor node, modelled with
a high-level synthesis approach on an imperative multi-process-
ing programming language level [3].

Figure 2. Sensor node building blocks providing mobility
and processing for multi-agent systems: parallel agent virtual
machines, agent-processing scheduler, communication, and
data processing. All parts are mappable to digital logic on
RTL and SoC system architecture.

Inter-agent communication is provided by shared data structures,
available on each sensor node. Each node is represented by a
node agent, too, to ensure interaction and information exchange
between mobile agents and the sensor node. All interacting
agents must comply about the data structures and types, fixed at
design time.

4. Approach II: Multi-Agent Implementation Using Code
Morphing

Multi-agent systems providing migration mobility using
code morphing can help to reduce the communication cost in a
distributed system [4]. The second proposed hardware architec-
ture and runtime environment is specifically designed towards
the implementation of mobile agents by using dynamic code mor-
phing under the constraints of low-power consumption and high
component miniaturization. It uses a modified and extended ver-
sion of FORTH as the programming language for agent pro-
grams. FORTH is a stack-based interpreted language whose
source code is extremely compact. Furthermore, FORTH is ex-
tensible, that is new language constructs (called words, zero-op-
erand functions) can be defined on the fly by its users. A FORTH
program contains built-in core instructions directly executed by
the FORTH processing unit and user-defined high-level word and
object definitions that are added to and looked up from a diction-

ary data structure. This dictionary plays a central role in the im-
plementation of distributed systems and mobile agents. Words
can be added, updated, and removed (forgotten), controlled by
the FORTH program itself. User-defined words are composed of
a sequence of words. Again, the runtime environment is modelled
on the behavioural level using the multi-process-oriented pro-
gramming language and can be embedded in a single-SoC hard-
ware design [4].
The principal system architecture of one FORTH processing
unit (PU) part of the node runtime environment is shown in Fig.
3. A complete runtime unit consists of a communication system
with a smart routing protocol stack, one or more FORTH process-
ing units with a code morphing engine, resource management,
code relocation and dictionary management, and a scheduler
managing program execution and distribution, which are normal-
ly part of an operating system which does not exist here. A
FORTH processing unit initially waits for a frame (a FORTH
program) to be executed. During program execution, the FORTH
processing unit interacts with the scheduler to perform program
forking, frame propagation, program termination, object creation
(allocation), and object modification.
The scheduler is the bridge between a set of locally parallel exe-
cuting FORTH processing units, and the communication system,
a remote procedure call (RPC) interface layered above SLIP, a
fault-tolerant message-based communication system used to
transfer messages (containing code) between nodes using smart
delta-distance-vector routing [2].
The simple FORTH instruction format is an appropriate starting
point for code morphing, i.e., the ability of a program to modify
itself or make a modified copy, mostly as a result of a previously
performed computation. Calculation results and a subset of the
processing state can be stored directly in the program code which
changes the program behaviour. The standard FORTH core in-
struction set was extended and adapted for the implementation of
agent migration in mesh networks with two-dimensional grid to-
pology. In our system, a FORTH program is contained in a con-
tiguous memory fragment, called a frame. A frame can be
transferred to and executed on remote nodes and processing units.

Figure 3. Mobile-agent runtime architecture providing code
morphing, consisting of FORTH data processing units,
shared memory and objects, dictionary, scheduler, and com-
munication.

AGENT
STATE

M

AGENT VM AGENT VM AGENT VM

A-Queue A-Queue A-Queue

COMMUNICATION

MESSAGE
POOL

SCHEDULER

AGENT
STATE

AGENT
STATE

M

DATA PROC.

M-QueueM-Queue

Sensor

Comm.
Links

SoC
Microchip

Messages

Finite
State
Machine
RTL

Send

Receive

SCHEDULER
EXECi {FRAME}

CS

PC FRAME

 FORTH
 PROCESSING UNIT

SS
DS

RS
FRAME

FRAMES VMS

FRAME’’

PC’’ FRAME’’

FRAME
ES

DATA
STACK

RETURN
STACK

EXCEPTION
STACK

CODE SEGMENT DATA SEGMENT

DICTIONARY

LUT

OBJ

 FORTH
 PROCESSING UNIT

SLIP / RPC Communication

PC: Program Counter
FRAME: Frame Pointer
PC’’
FRAME’’: Shadow
 Enivironment
CS: Program Code
DS: Data
*S: Stack
OBJ: Object Pool
PU: Processing Unit
VMS: PU Pool
LUT: Adress
 Lookup Table

FORK
NEW

RETURN

TRY
RAISETOR

FROMR

VALUE
PICK

FETCH
STORE
Reference: S. Bosse, F. Pantke, F. Kirchner, Data Processing and Communication in Distributed Low-power Sensor Networks using Multi-
agent Systems, 1st Joint Symposium on System-integrated Intelligence: New Challenges for Product and Production Engineering, Special
Session Enabling Technologies for Sensorial Materials – Taking sensor integration, June 27th – 29th 2012: Hannover, Germany

[SYSINT12A]
Page 2

5. Comparison and Conclusions

In the following comparison, the first approach is abbreviated
state-machine-based, the second code-based. Table 1 compares
both runtime architectures and agent implementations. Both ap-
proaches allow the implementation of agent mobility and pro-
cessing on hardware single-chip level. Flexibility and design time
versus resource requirements is the main difference. The state-
machine-based approach with fixed and hard implemented func-
tional agent behaviour is well suited for a small set of different
agents with simple algorithm complexity, whereas the code mor-
phing approach is suited for a larger set of different agents with
higher algorithm complexity.
A program controlled approach is less power efficient and re-
quires more resources, but provides a higher lever of implemen-
tation and design freedom. The code morphing approach reduces
communication complexity. One main issue addressed in the de-
sign of multi-agent systems is cooperation and communication of

agents, and to ensure how can agents understand each other. Mes-
sage based systems require some kind of communication lan-
guage. Each node which processes agents must comply about
well known data structures used for inter-agent communication,
fixed at design time. There are only limited capabilities to handle
data type inconsistency and the non-availability of expected data.
In contrast, the code based approach uses named code and data
words resolved by a dictionary, with a well known interface, and
the capability to check and handle type inconsistency. The hard-
ware implementation of the dictionary and the operational inter-
face produces a fairly high overhead of the resources compared
with the traditional shared data approach using memory referenc-
es (as used in the state-machine-based approach I).
Future experimental investigations using real sensor networks
with different classes of data processing algorithms should clarify
the advantages and disadvantages of both approaches.

Table 1. Comparison of the two data processing approaches for mobile agents

 References

[1] M. Wooldridge, An Introduction to MultiAgent Systems,
Wiley (2009)

[2] S. Bosse, D. Lehmhus, Smart Communication in a
Wired Sensor- and Actuator-Network of a Modular Ro-
bot Actuator System Using a Hop-Protocol with Delta-
Routing, Proceedings of Smart Systems Integration
Conference, Como, Italy, 23-24.3.2010 (2010)

[3] S. Bosse, Hardware-Software-Co-Design of Parallel
and Distributed Systems Using a unique Behavioural
Programming and Multi-Process Model with High-
Level Synthesis, Proceedings of the SPIE Microtechnol-
ogies 2011 Conference, 18.4.-20.4.2011, Prague, Ses-
sion EMT 102 VLSI Circuits and Systems

[4] S.Bosse, F. Pantke, F. Kirchner, Distributed Computing
in Sensor Networks Using Multi-Agent Systems and

Code Morphing, ICAISC Conference, Prague, 2012
[5] A. Kent, J. G. Williams (Eds.), Mobile Agents, Ency-

clopedia for Computer Science and Technology, New
York: M. Dekker Inc., 1998

[6] F. Pantke, S.Bosse, D. Lehmhus, M. Lawo, An Artificial
Intelligence Approach Towards Sensorial Materials,
Future Computing Conference, 2011

[7] H. Peine, T. Stolpmann, The Architecture of the Ara
Platform for Mobile Agents, MA '97 Proceedings of the
First International Workshop on Mobile Agents,Spring-
er-Verlag London, 1997

[8] A.I. Wang, C.F. Sørensen, and E. Indal., A Mobile
Agent Architecture for Heterogeneous Devices, Wire-
less and Optical Communications, 2003

I. State-Machine II. Code morphing
Agent behaviour is fixed, nodes must comply with previously

defined common data types and structures as
well as message formats

not fixed, nodes do not require knowledge
of data structures and types in advance

Behaviour is imple-
mented

statically in local data processing machine dynamically in programming code

Implementation in Hardware, single chip Hardware, single chip
Agent state is kept in data storage code, stacks, and data storage
Message size depends on full state size full code size and partial state size
Hardware resources are small (< 1M eq. logic gates including stor-

age)
large (> 1M-3M eq. logic gates including
storage)

Storage resources are small (< 5000 register cells) large (> 10000 register cells)
Speed is high (1-2 clock cycles per statement) medium (5-20 clock cycles per core word)
Power consumption is low medium
Reference: S. Bosse, F. Pantke, F. Kirchner, Data Processing and Communication in Distributed Low-power Sensor Networks using Multi-
agent Systems, 1st Joint Symposium on System-integrated Intelligence: New Challenges for Product and Production Engineering, Special
Session Enabling Technologies for Sensorial Materials – Taking sensor integration, June 27th – 29th 2012: Hannover, Germany

[SYSINT12A]
Page 3

	1. Introduction
	2. Distributed Data Processing with State-based Agents
	3. Approach I: Message-Based/State Machine Agent Implementation
	4. Approach II: Multi-Agent Implementation Using Code Morphing
	5. Comparison and Conclusions
	References

