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Abstract: Modelling of complex dynamic systems like pandemic outbreaks or traffic flows in cities on macro-level is

difficult due to a high variance on entity micro-level and unknown or incomplete interaction models. Agent-based and

Cellular Automata (CA) simulations based on micro-level modelling can be used to investigate the outcome of system ob-

servables in a sandbox. For a reasonable accuracy a high number of agents, sufficient behaviour variance, high computa-

tional times, and calibrated model parameters are required. Surrogate predictive modelling of the multi-agent system can

be used to replace time-consuming simulations. In this work we present a hybrid aprroach combining Agent-based Simu-

lation, probabilistic contextual CA, and Machine Learning (ML). We investigate the replacement of the ABS-CA by surro-

gate ML models trained by simulation data. The predictive model is state-based and applied to time-series data to predict

future development of aggregated system observables. We discuss and show the negative impact of uncalibrated real-world

sensor data on time-series prediction and an improvement by surrogate modelling of simulation. A use-case of pandemic

simulation using real-world statistical data is used to investigate and evaluate the suitability and accuracy of the proposed

methods and to show the high sensitivity of surrogate modelling on distorted and biased data.
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1. Introduction

The typical goal of a simulation is the prediction of

the behaviour of a complex system by aggegragte

observables for a particular situation. A simulation

can be composed of a set of interacting entities on

micro-level, like humans in social sciences, to in-

vestigate and predict the outcome of system-level

aggregate observables. Machine Learning as well as

simulation are used to predict the response of a

system to a stimulus that is hard to be studied in

the real world and to get macro-level from micro-

level observables (aggregates). Both techniques

uses data analysis and mathematical modelling [1].

In most cases a simulation is composed from ele-

mentary cells (holonomic approach). Each cell is

defined by a micro-level model and by a set of in-

teraction functions. Agent-based modelling (ABM)

and simulation (ABS), and Cellular Automata (CA)

are prominent examples of this decomposition ap-

proach for large-scale dynamic systems. CA can be

considered as a simplified sub-class of ABM/ABS

with strictly bounded interaction ranges, better suit-

ed and scaling for large-scale problems with a very

high number of entities typically required to

strength statistical quality. A simulation model is

typically a simplification and abstraction of the

complex real world that is characterised by the

behaviour modelling of single entities (core cell

elements of the simulation, e.g., an agent or a cell),

the interaction between the elements, the number of

elements relative to real world systems, and the

variance of behaviour and interaction models.

Mostly only an ensemble averaged model is used

that is derived from real world observations and

sensor data; individualism cannot be covered prop-

erly.

The combination of Machine Learning and simu-

lation can improve model and simulation quality,

i.e., there is according to:

1. Machine Learning assisted simulation improv-

ing the simulation model and quality [1];
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2. Simulation assisted Machine Learning

improving the prediction or classification

model [1];

3. Emulation of the multi-agent behaviour model

by an ML derived macro model (surrogate

modelling) [ANG20][3];

4. Model calibration using ML [1].

The central concept and novelty of this work is a

ML-based ensemble estimator for aggregate observ-

ables learned from an incremental hybrid and

domain-hierarchical MAS/CA simulation with the

aim to improve real-word system time-series data

prediction. The CA extension was chosen for

efficiency and scaling reasons. A tight coupling of

the simulation to real-world entities is an additional

feature that ensures real-time updates of the simula-

tion and incremental calibration of the simulation at

simulation time, supporting crowd sensing and digi-

tal twin methodologies (but not stressed in this

work). The work utilises and combines:

1. Hierarchical MAS-CA simulation incorporat-

ing real-world data for the parametrisation of

the simulation world and agent modelling (di-

gital twin concept) to predict future develop-

ments of system state observables from past

data;

2. Hierarchical domain-specific modelling and

decomposition (with respect to longitudinal

and spatial scale);

3. Predictive modelling of time-series data using

state-based ML models trained on real-world

and simulation data;

The major issue with real-world coupled simula-

tions and predictive machine modelling from simu-

lation is the discrepancy of sensor data (input and

output observables) collected in real and simulation

domains. Typically, the simulation is almost inaccu-

rate (and wrong) with respect to real world, but the

sensor measuring is accurate and exact (all popula-

tion entities can be accessed and measured direct-

ly). In contrast to the real world domain where

measurements are inaccurate and in many cases

biased and distorted (or at least not representative),

especially on the longitudinal scale. For example,

considering traffic simulation, the sensors (counting

and tracing traffic flows) are relatively accurate and

representative in both domains. But in contrast, ob-

servations and simulation of pandemic situations

disperse significantly in real and virtual world

domains. Therefore, we have chosen the COVID19

pandemic use-case to demonstrate the issues with

real-world coupled and data-based simulation and

the deployment of predictive machine models

derived from inaccurate and biased data.

The surrogate ML models should be able to

predict future developments of aggregated macro-

level observables from past data, e.g., the accumu-

lative incidence rate of a pandemic situation. ML

modelling is already applied in social science and

ecological modelling [4]. The application of such

learned surrogate models on inaccurate and distort-

ed real-world sensor data will still result in inaccu-

rate prediction results. To solve this issue, a sensor

correction and calibration model must be derived

by using correct simulation sensor data that is ac-

quired by real-world measuring principles resulting

in strongly biased and distorted data. To overcome

the computational scaling problem due to a re-

quired high number of agents (beyond 100000) a

hierarchical hybrid model of agents and contextual

cellular automata simulating a lattice gas model is

proposed. Fine-grained simulation is performed by

spatial and temporal partitioning adapting models

and simulations in consecutive time intervals based

on changing environmental parameter space. As

well simulation as prediction models can be updat-

ed incrementally by new measured data (longitudi-

nal extension), e.g., by agent-based crowd sensing

[5]. The following sections introduce the hybrid

and hierarchical modelling and simulation model,

showing results of time-series prediction on real-

world data, and finally showing in comparison prel-

imenary results of time-series prediction from

simulation data.

2. The Hybrid and Hierarchical

Concept

The hybrid and hierarchical methodology addressed

in this work combines MAS-ABS with supervised

ML, and the ABS combines two levels of agent

behaviour model complexity, state-based reactive

agents with complex long-range interaction and CA

cells with simple short-range interaction.
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Figure 1. Hybrid simulation with domain-specific MAS-ABS combined with probabilistic CAs. Each CA represents a simu-

lation container with simple agents (diamonds) for a spatial domain d i controlled by a domain agent (circle). Each CA

world is partitioned in logical domains sd j, too. Spatial domains are connected by the domain controller agents.

The CA is a sub-domain model of the agent

model. The simulation framework consists of an

agent simulator [6] that is capable to process com-

putational and physical agents (first-level class

agents) as well as CA worlds seamlessly. The

domain-hierarchical MAS-CA modelling decom-

poses complex real worlds in simplified organised

cell networks on micro-level, the ML methods are

used to estimate system-level (ensemble) observ-

ables from sensors.

Computational agents are mobile software that

can migrate between real- and virtual worlds and

they are used for real-world data collection (includ-

ing mobile crowd sensing) and for creating digital

twins in the simulation, whereas physical agents

are pure simulation objects that represent physical

entities in the simulation world. To reflect spatial

variance, the simulation world SS is partitioned into

spatial sub-domains SS={Sdi}, associated with a

MAS. Each domain is handled by an agent agdi

from the MAS that is a spatial and organisational

representation of a large set of simple agents situat-

ed in a simplified CA world. Each CA represents a

spatial region with a high number of interacting en-

tities (e.g., humans). The MAS reflects the coarse-

grained, the CA the fine.grained simulation model.
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The simulation model is composed basically of

mobility, behaviour, and interaction of the observed

entities.

First-level domain agents represent larger spatial

domains (e.g., terrestrial units or entire cities) and

interact with each other to simulate crowd flows,

organisation, and networking across spatial

domains. Each rectangular CA world CW connect-

ed to one domain agent consists of cells arranged

on a regular two-dimensional grid that is parti-

tioned into logical sub-domains (regions) ld associ-

ated with specific interaction behaviour and en-

vironmental constraints, e.g., living and working

areas, CW={ld j}, ld j={cell ∈ A j}. The second-level

class cell agents within the CA are modelled by a

"mobile" data structure bound to one current cell in

the CA world and processed by a cell activity func-

tion. The mobility of agents within the CA world is

modelled with a randomised lattice-gas model by

shifting the agent state spatially. A CA cell is occu-

pied by one or no agent. Agents can access neigh-

bouring cells (Moore neighbourhood) and can

move to neighbour cells. The hybrid and hierarchi-

cal architecture is shown in Fig. 1. The main differ-

ence between first- and second level agents is the

behaviour function. First-level agents bind each

their own behaviour function, whereas second-level

agents are represented by on shared behaviour

function.

The aggregated data collected from simulation is

used to train a surrogate machine model for time-

series prediction. A state-based Long-Short Term

Memory (LSTM) artificial neural network architec-

ture was chosen for time-series prediction [7]. A

LSTM network is able to predict a variable x for a

future sample point n+∆ with past data {x1,..,xn}.

The real-world data is collected remotely by com-

putational agents, e.g., performing WEB scraping

to get environmental state information.

The next section demonstrates the novel

hierarchical simulation approach for a pandemic

use-case. The methodology can also be applied to

other fields like traffic flow prediction and optimi-

sation, logistic flows, and long-term prediction with

respect to migration and seggegration effects (social

networking).

3. Use-Case: Pandemic Modelling

and Prediction

We demonstrate the proposed hybrid and hierarchi-

cal simulation approach of real-world coupled

MAS-CA simulation and longitudinal surrogate

modelling for the forecasting of pandemic situa-

tions. Pure CA-based approaches were already ap-

plied to pandemic simulations [8]. This worst-use-

case poses a highly unreliable and distorted

measuring process, varying on longitudinal scale,

and high dynamics based on micro-scale effects.

3.1 Simulation and Surrogate

Modelling

Preliminary experiments were performed to investi-

gate the accuracy and generalisation of a domain-

specific prediction model from real data with a

time-series prediction of infection observables us-

ing an LSTM ANN architecture. The input data are

weekly infection cases rates of COVID19 pandemic

data base from [9], and the output of this model

m∆(t) is the prediction of ∆ week ahead infection

cases rates with respect to spatial domains and po-

pulation age domains. Each spatial domain is

trained with its own model. Models are finally ex-

changed between spatial domains to test generalisa-

tion capabilities. The input data was used for seed

conditions of the simulation, too.

The simulation world consists of 38 domains of

territorial units (TU) of Germany (shown in Fig. 2)

with the simulation parameters: Spatial centre loca-

tion, population statistics, and mobility intercon-

nects between neighbouring TUs. The agent base

model is SIRD (susceptible-infected-recovered-

dead) population classification. Each spatial domain

is represented by its own domain model and

parameter set and is simulated independently by a

domain agent associated with Lattice Gas Proba-

bilistic and Context-based CA (LG-PCCA), i.e.,

each domain region is a container for statistical

moving and interacting agents, defined by a set of

cross-section parameters. Longitudinal day-night

cycle simulation is performed. The domain agent is

responsible for sensor data acquisition, monitoring,

and inter-domain interaction. The CA is partitioned
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into logical domains, e.g., home, work, outside,

school, and culture/sports areas. Sub-agents given

by data structures holding parameter and state

variables located at cells represent people. Mobility

of individuals is given by random walk (gas

model), directed diffusion (context model), a mean

velocity, and neighbouring and sub-domain

constraints. Interaction (infection) is given by a

dynamic cross-section and accumulator model, i.e.,

the integral of mobility and interaction cross-

section. Perception and movement of an agent is

limited to neighbouring cells (Moore

neighbourhood); an agent can change it place (cell)

either my moving to a free neighbour cells or by

agent-pair swapping. Agent can migrate between

different CAs via the domain agents, i.e., domains

interact with each other by crowd flows (holiday,

travelling, business).

The agent behaviour model covers a wide range

of behaviour parameter, i.e., age domains (child,

youth, middle, elder people, ...), activity domains

(children, scholars, students, workers, non.workers,

retired people), parameter sets (social networking

factor, risk, mobility rate, protection, ...), networks

(family, temporary groups), infection test coverage

and strategies.

Output observables are accumulated monitored

infection cases counts (with age distribution?) on

daily basis (simulation) and on weekly basis (rates,

real-world data). Input sensor variables (for simula-

tion) are population and density distribution, age

distribution, start infection count, social networking

parameters, social cluster densities, mobility, open-

ing status of domestic and private facilities, social

restrictions, lethality, mortality, and the infection

reproduction factor adapting the agent cross section

and accumulator thresholds. Simulation is syn-

chronised with real-world statistical pandemic data

(accumulated, 1 week period). Agent-based WEB

Scraping and Mining is used to sense environmen-

tal state variables, e.g., closed stores or schools,

contact limitations.

Population representation by agents in a CA

world is controlled by a domain agent. A typical

population-agent scale ranges from 1:1000 to 1:100

depending on population density; if infection pro-

bability is low (<0.01), a higher density is required.

Model calibration is required for the simulation

model (including time-scale calibration) from real

to virtual world, and for the surrogate model from

virtual to real world.
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Figure 2. Simulation world partitioned into 38 TUs

(NUTS level 2) mapped on 38 CA worlds, Cartesian

coordinates, not ratio scaled. Size of CA grid is related

to TU domain size and population density.

3.2 Preliminary Results

3.2.1 Real-Data Prediction

Raw real-world data from national RKI data base

[9] was chosen to perform preliminary tests for

predictive time-series modelling and simulation and

to demonstrate the impossibility to predict future

developments from past data. The data consists of

weekly updated pandemic COVID19 infection

cases (positive tests), i.e., infection rates, parti-

tioned horizontally in 5 year age ranges, and verti-

cally in TUs. The accumulated absolute infection

cases, i.e., the number of infected persons, cannot

be measured accurately and is not used here (in

contrast to simulation).
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Figure 3. Playback of a domain-specific predictive

system-level model derived from entire data series of

longitudinal infection case rate development from real-

world data (Top) Four week prediction (∆=4w) for TU

Bremen with respect to four population age ranges (Bot-

tom) Model trained with TU Bremen data and applied to

data from TU Koblenz [x: week, y: normalised infection

case rate numbers, y0: reference data , y: predicted]

The input sensor variables for the LSTM predic-

tor is the infection rate (IR) grouped in four age

ranges 〈IR(A00-A09), IR(A10-A19), IR(A20-A59),

IR(A60-A99)〉. The output prediction variables

(longitudinal extrapolation) are also the infection

rates (IR), i.e., 〈IR∆(A00-A09), IR∆(A10-A19),

IR∆(A20-A59), IR∆(A60-A99)〉. The LSTM predictor

has a layer configuration of [4,8,4] with 8 fully

connected LSTM cells [10], a sigmoid transfer

function, trained by single-sequence learning.

Results of a playback experiment for one TU (Bre-

men) used to train and predict the infection rate

development (∆=4 weeks) is shown in Fig. 3.

The entire data set was used for training and

prediction (playback from start to end). A very high

accuracy of prediction results were achieved (error

below 10%). But if a model trained for one domain

is applied to data of another domain the prediction

shows very high prediction errors and peaks, shown

for the TU Koblenz. This result shows the require-

ment for domain-specific simulation and surrogate

modelling, and that the surrogate prediction model

learned some longitudinal data structure that is not

related to any pandemic model and behaviour

(black box pitfall)! But the aim of the predictive

modelling of aggregate variables is future predic-

tion. To illustrate the impossibility of long-term fu-

ture prediction the experiment was repeated but

with a training only use the first half data set, show

in Fig. 4. The predictor function diverges quickly

after the last trained point and tends to oscillate.

Figure 4. Future estimation of the same domain-specific

predictive system-level modelling derived from the half of

the data series (cut-off at week 40) of longitudinal infec-

tion case rate development from real-world data (Top)

Four week prediction (∆=4w) for TU Bremen with

respect to four population age ranges [x: week, y: nor-

malised infection case rate numbers, y0: reference data ,

y: predicted]

3.2.2 Simulation and Prediction

The simulation were performed with the proba-

bilistic and contextual CA representing one artifi-
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cial TU domain. The CA was spatially partitioned

into 6 logical regions, shown in Fig. 5 (a): Home,

outside, working area, shopping area, schools, and

culture/sports. Agents that want to change the

region always passes the centred outside region.

Each region is defined by a mobility scaling factor.

The agent movement is either randomised or

directed. The simulation addresses day-night cycles.

All agents return to their root home position at

night. Fractions of agents migrate to different re-

gions at different time slots. In contrast to the real-

world prediction, the normalised accumulated in-

fection cases is the aggregated system state variable

that is measured and predicted by the trained surro-

gate model. The sensor input variables is the infec-

tion count IC (full age distribution) with an auxili-

ary variable, the derivation: 〈IC, δIC/δt}. The out-

put prediction variable is again IC∆. The LSTM

model has a layer configuration of [2,7,7,1] with

two × 7 fully connected LSTM cell layers [10]

(each cell with memoryToMemory, input-

ToOutput, and inputToDeep gates control), a

sigmoid transfer function, and was trained periodi-

cally with multi-sequence learning.

A high prediction accuracy for ∆=4 (arb. units)

was achieved in playback mode (i.e., full-range

training and replay prediction), as shown in Fig. 5

(b). But in contrast to the highly distorted and tem-

porally biased real-word data predictions (with use-

less results), future prediction (of a second infec-

tion raise) can be predicted with high accuracy just

by using past date only (cut-off point is here 30),

as shown in Fig. 5 (c). To conclude, the surrogate

modelling of the CA/MAS system poses a high de-

gree of generalisation (on the longitudinal scale), in

contrast to the same model trained on real-world

data.

The seed of the simulation was a population of

600 agents with a share of 5% infected agents. The

cell placement is randomised. Some simulation

runs (with same seed parameters) did not show a

pandemic development. Without the (dependent)

auxiliary variable, the prediction model could not

be trained (no training convergence). In the real-

data prediction case, there were already four corre-

lated input variables (age range variables). There is

still no longitudinal updated simulation (with real

world data) and surrogate model calibration. The

time scale is artificial and arbitrary.

!"#

!$#

!%#

Figure 5. (a) CA simulation world with logical regions

(b) Playback of predictive modelling of longitudinal in-

fection cases development; full-range training (∆=4 arb.

units) from simulation data (c) Partial-range training

and future prediction [x: time (arb. units), y: normalised

infection case numbers, y0: reference data , y: predicted]
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4. Conclusion

The acquisition of real-world sensor data and the

derivation of time-dependent system state observ-

ables can be a challenge. The measurement and the

test sample distribution of real-world sensors are

often distorted and biased, or sensor variables are

nor accessible (on spatial and/or longitudinal scale).

Pandemic situations are prominent examples. Simu-

lations rely on accurate data for simulation world

parametrisation and model calibration. Time-series

prediction of system state variables is of high

relevance for political and domestic decision mak-

ing processes. We evaluated time-series prediction

on real data from a RKI data base containing infec-

tion cases data rates of the COVID19 pandemic (54

weeks) using a LSTM neural network. Firstly, we

showed a high prediction accuracy on the longitudi-

nal axis (4 week prediction) in playback mode, but

very low accuracy on spatial scale, i.e., by applying

a trained model to another spatial domain, and for

future predictions. Secondly, we concluded that the

trained model do not base on any reasonable pan-

demic model and that the original RKI data base

contains highly distorted and biased data (especial-

ly on longitudinal scale). In the next step we intro-

duced a multi-domain hybrid and hierarchical

agent-cellular automata simulation approach. The

CA was partitioned into logical regions and agent

mobility and interaction bases on a constrained

lattice-gas model. The data collected from the

simulation was again used for time-series predic-

tion using a LSTM-ANN providing a surrogate

model for the system state variable infection cases

of the MAS-CA simulation. Again, a high accuracy

for playback and forward predictions was achieved.

But the simulation model cannot actually be ap-

plied to real-world data, and sensor calibration ad-

dressing longitudinal, measuring, and pandemic

parameters have to be performed in future work to

achieve a transfer to real-world data prediction. Fi-

nally, domain-specific variance must be improved

and derived from real-world data. The surrogate

modelling of the MAS-CA system poses a high de-

gree of generalisation (on the longitudinal scale), in

contrast to the same model trained on real-world

data.
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