
DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
Distributed Computing and Reliable Communication
in Sensor Networks using Multi-agent Systems

Stefan Bosse(1,3), Florian Pantke(2,3)
(1) University of Bremen, Department of Computer Science, Workgroup Robotics
(2) TZI-Center for Computing and Communication Technologies, Univ. of Bremen
(3) ISIS Sensorial Materials Scientific Centre, Univ. of Bremen

Abstract
There is a growing demand for robust distributed computing and systems in sensor
networks. Interaction between nodes is required to manage and distribute information.
One common interaction model is the mobile agent. An agent approach provides
stronger autonomy than a traditional object or remote-procedure-call based approach.
Agents can decide for themselves, which actions are performed, and they are capable
of flexible behaviour, reacting on the environment and other agents, providing some
degree of robustness. The focus of the application scenario lies on sensor networks
and low-power, resource-aware single System-On-Chip (SoC) designs, i.e., for use in
sensor-equipped technical structures and materials. We propose and compare two dif-
ferent data processing and communication architectures for the implementation of mo-
bile agents in sensor networks consisting of single microchip low-resource nodes.
Furthermore, a reliable smart communication protocol for incomplete and irregular net-
works are introduced. Two case studies show the suitability of agent-based approach-
es for distributed computing.

Keywords
Distributed Computing, Agent, Sensor Network, Energy Management, Data Fusion

1. Introduction

Trends recently emerging in engineering and micro-system applications
such as the development of sensorial materials show a growing demand for
autonomous networks of miniaturized smart sensors and actuators embed-
ded in technical structures [6]. With increasing miniaturization and sensor-
actuator density, decentralized network and data processing architectures
are preferred or required. A multi-agent system can be used for a decen-
an Bosse et al. - 1 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
tralized and self-organizing approach of data processing in a distributed
system like a sensor network, enabling the mapping of distributed data sets
to related information, for example, required for object manipulation with a
robot manipulator.
Simplification and reduction of synchronization constraints owing to the au-
tonomy of agents is provided by the distributed programming model of mo-
bile agents [5].
Traditionally, mobile agents are executed on generic computer architec-
tures [7][8], which usually cannot easily be reduced to single microchip lev-
el like they are required, e.g., in sensorial materials with high sensor node
densities.
In the following sections, we propose and compare two different data pro-
cessing and communication architectures suitable for the implementation
of mobile agents in sensor networks consisting of single microchip low-re-
source nodes. A reliable communication protocol suitable for robust com-
munication in agent based systems is introduced and analysed. Finally, the
two agent processing architectures are compared.

2. Distributed Data Processing with State-based Agents

Initially, a sensor network is a collection of independent computing nodes.
Interaction between nodes is required to manage and distribute data and
computed information. One common interaction model is the mobile agent.
An agent is capable of autonomous action in an environment with the goal
to meet its delegated objectives. An agent is a data processing system, a
program executed on a computer system, that is situated in this environ-
ment [1]. A multi-agent system is a collection of loosely coupled autono-
mous agents migrating through the network. Agents can be used in sensor
networks for
l Sensor data processing and extraction
l Sensor data fusion, filtering, and reduction of sensor data to information

in a region of interest
l Sensor data and information distribution and transport
l Global energy management, exploration and negotiation

Agents can operate state-based. Such an agent consists of a state, holding
data variables and the control state, and a reasoning engine, implementing
an Bosse et al. - 2 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
behaviours and actions. In this proposed data processing and communica-
tion architecture, the state of an agent is completely kept in messages
transferred in the network providing agent mobility. The functional behav-
iour of an agent can be easily implemented statically with a finite-state ma-
chine part of the local data processing system on register-transfer level
(RTL), or dynamically by using a programmable code approach.

 Fig. 1. State-based agents and interaction with environment.

Agents record information about the environment state e∈E and history.
Let I be the set of all internal states of the agent. An agent's decision-mak-
ing process is based on this information. The perception function see maps
environment states to perceptions, function next maps an internal state and
percept to an internal state, the action-selection function action maps inter-
nal states to actions (see also Fig. 1):

see : E → Per
next : I × Per → I
action : I → Act

3. Approach I: Non-programmable Message-Based/State Machine

Agent Processing Architecture

Figure 2 shows the first proposed non-programmable execution environ-
ment used for the data processing of mobile agents. This execution envi-
ronment is preferred for low-resource implementations of mobile agents
with low algorithm complexity. All nodes must comply with data structures
and message formats specified at design time required for the cooperation
of agents.
There is a message module implementing smart adaptive delta-distance
routing of messages (SLIP, the Scalable Local Intranet Protocol, explained

��������	�

��	�

��

����

������

�
	
an Bosse et al. - 3 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
later), providing some kind of fault-tolerance regarding interconnect fail-
ures, and several finite-state machines implementing the agent behaviours
and providing virtual machines able to process incoming agents. All parts
are mappable to digital logic on RT level and single-SoC system architec-
tures, a prerequisite for miniaturized sensor nodes embedded in structures
and sensorial materials.

 Fig. 2. Sensor node building blocks providing mobility and processing for multi-agent systems:

parallel agent virtual machines, agent-processing scheduler, communication, and data

processing. All parts are mappable to digital logic on RTL and SoC system architecture.

The functional agent behaviour is implemented with a (non-mobile) finite
state machine (virtual machine) built in the sensor node, modelled with a
high-level synthesis approach on an imperative multi-process programming
language level [3].
Inter-agent communication is provided by shared data structures, available
on each sensor node. Each node is represented by a node agent, too, to
ensure interaction and information exchange between mobile agents and
the sensor node. All interacting agents must comply about the data struc-
tures and types, fixed at design time.
A scheduler is responsible to map incoming messages (M), holding infor-
mation about the agent class and agent state, to agent executions frames
(A), passed to an agent virtual machine by using queues. Finally, the
scheduler transforms the state of finished agents ready for migration to
messages and passes them to the communication unit by using queues,
too.

AGENT
STATE

M

A-Queue

MESSAGE
POOL

SCHEDULER

M

M-QueueM-Queue

Sensor
SoC
Micro-
chip

Messages

Finite
State
Machine
RTL

DATA PRO.

COMMU. AGENT VM

AGENT
STATE

A-Queue

AGENT VM
an Bosse et al. - 4 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
The design process is shown in Fig. 3, and requires the textual specification
of the agent on algorithmic and programming level (left part). This specifi-
cation is transformed into an abstract agent finite state machine (FSM)
model, the state memory layout (middle part), and the message structure.
Finally the microchip implementation on RTL (right part) can be synthesized
from this intermediate representation, creating an application specific pro-
cessing environment for mobile agents.

 Fig. 3. Design process for state-machine based agent implementation

4. Approach II: Programmable Multi-Agent Processing Architec-

ture using Code Morphing

Multi-agent systems providing migration mobility using code morphing can
help to reduce the communication cost in a distributed system [4]. The sec-
ond proposed hardware architecture and run-time environment is specifi-
cally designed towards the implementation of mobile agents by using
dynamic code morphing under the constraints of low-power consumption
and high component miniaturization. Code morphing is the ability of a pro-
gram to modify its own program code to reflect state changes and embed-
ding computational results.
The advantage of this distributed computation model using code morphing
is the computational independence of each node and the eliminated neces-

Type Perc = Record
 energy : Integer;
 links: Connectivity;
End;

Function see(node) : Perc =
Begin
 VAR p:Perc;
 p.energy:=Node.energy-ET;
 p.links:=Node.links;
 Return p;
End;
Function next(s,p) : State =
Begin
 Case s of
 | Explore =>
 If p.energy > ET Then
 Return Stay;
 | ..
End;
Procedure action (s) = ...

Agent Specification

Type Message =
Record
 state: State;
 energy: Integer;
 migration: Bool;
 ...
End;

Agent Message Structure

Agent Finite State Machine

state
energy

perception
....

Agent State Memory

AGENT
STATE

AGENT VM

A-Queue

COMMUN.

MESSAGE
POOL

SCHEDULER

DATA PRO. M-Queue

SoC
Microchip

Finite
State
Machine
RTL

System On Chip/RTL
Architecture

S1

S2

S3

Algorithmic &
Programming Level
an Bosse et al. - 5 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
sity for nodes to comply with previously defined common data types and
structures as well as message formats. Computing nodes perform local
computations by executing code and cooperate by distributing modified
code (carrying embedded information) to execute a global task.
It uses a modified and extended version of FORTH as the programming
language for agent programs. FORTH is a stack-based interpreted lan-
guage whose source code is extremely compact. Furthermore, FORTH is
extensible, that is new language constructs (called words, zero-operand
functions) can be defined on the fly by its users. A FORTH program con-
tains built-in core instructions directly executed by the FORTH processing
unit and user-defined high-level word and object definitions that are added
to and looked up from a dictionary data structure. This dictionary plays a
central role in the implementation of distributed systems and mobile agents.
Words can be added, updated, and removed (forgotten), controlled by the
FORTH program itself. User-defined words are composed of a sequence of
words.
The principal system architecture of one μFORTH processing unit (PU,
part of the node runtime environment) is shown in Fig. 4. A complete run-
time unit consists of a communication system with the smart routing proto-
col stack SLIP, one or more μFORTH processing units with a code mor-
phing engine, resource management, code relocation and dictionary
management, and a scheduler managing program execution and distribu-
tion, that are normally part of an operating system, which does not exist
here. A μFORTH processing unit initially waits for a frame (a FORTH pro-
gram) to be executed. During program execution, the μFORTH processing
unit interacts with the scheduler to perform program forking, frame propa-
gation, program termination, object creation (allocation), and object modifi-
cation.
The scheduler is the bridge between a set of locally parallel executing
μFORTH processing units, and the communication system, a remote pro-
cedure call (RPC) interface layered above SLIP, providing fault-tolerant
message-based communication system used to transfer messages (con-
an Bosse et al. - 6 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
taining code) between nodes using smart XY delta-distance vector routing.

 Fig. 4. Mobile-agent run-time architecture providing code morphing, consisting of FORTH data

processing units, shared memory and objects, dictionary, scheduler, and communication

(PC: Program Counter, FR*M*: Frame Pointer, OBJ: Object Pool, CS: Code, LUT: Lookup Ta-

ble, *S: Stack).

The simple FORTH instruction format is an appropriate starting point for
code morphing, i.e., the ability of a program to modify itself or make a mod-
ified copy, mostly as a result of a previously performed computation. Calcu-
lation results and a subset of the processing state can be stored directly in
the program code, which changes the program behaviour. The standard
FORTH core instruction set was extended (see Tab. 1) and adapted for the
implementation of agent migration in mesh networks with two-dimensional
grid topology. In our system, a μFORTH program is contained in a contigu-
ous memory fragment, called a frame. A frame can be transferred to and
executed on remote nodes and processing units.
The virtual μFORTH machine can execute most of the core words from the
FORTH core programming language.

SCHEDULER

CS

PC FRM

 μFORTH
 PROCESSING UNIT

SS
DS

RS
FRAME

FRAME’’

PC’’ FRM’’

FRAME
ES

DATA
STACK

RETURN
STACK

EXCEPTION
STACK

CODE SEGMENT DATA SEGMENT

DICTIONARY

LUT

OBJ

SLIP / RPC Communication

an Bosse et al. - 7 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
 Tab. 1. μForth extensions for code morphing and agent migration support

All architecture parts of the multiprocessor-FORTH node, including SLIP
communication, μFORTH processing units, scheduler, dictionary and relo-
cation support, are mapped entirely to hardware multi-RT level and a sin-
gle SoC design using the ConPro compiler [3]. The resource demand
depends on the choice of design parameters and is in the range of 1M - 3M
equivalent gates (in terms of FPGA architectures). The entire design is par-
titioned into 43 concurrently executed sequential processes, communicat-
ing by using 24 queues, 13 mutex, 8 semaphores, 52 RAM blocks, 59
shared registers, and 11 timers.

5. Robust and Reliable Communication for Mobile Agent Systems

Most actual work in communication focusses on wireless networks [9]. But
sensorial materials and highly integrated robotics systems require basically
wired networks [6]. The Scalable Local Intranet Protocol (SLIP) and a com-
munication controller design was developed for message based robust
communication in low-resource and low-power sensor networks [2]. To
meet the goal of miniaturization and low-power capability, the protocol must
be capable of implementation in SoC and RTL designs, and adaptable to

Word Description

frame c! SETC: Sets frame of shadow environment for code
morphing.

m1 m2 >>c COPYC: Switches to morphing state: Transfers code
from program frame between two markers m1 and m2
into shadow frame (including markers)

>c TOC: Copy next word from program frame into shadow
frame

n s>c STOC: Pop n data value(s) from stack and store values
as word literals in shadow frame

<m> MARKER: set a marker position anywhere in a program
frame.

dx dy fork Send contents of shadow frame for execution to node
relative to actual node. If dx=0 and dy=0, the shadow
frame is executed locally and concurrently on a differ-
ent FORTH processing unit.
an Bosse et al. - 8 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
local communication requirements.

5.1. Reliable Communication Protocol SLIP

SLIP is scalable with respect to network size (address size class (ASC),
ranging from 4 to 16 bit), maximal data payload (data size class (DSC),
ranging from 4 to 16 bit length) and the network topology dimension size
(address dimension class (ADC), ranging from 1 to 4).
Network nodes are connected using (serial) point-to-point links, and they
are arranged along different metric axes of different geometrical dimen-
sions: a one-dimensional network (ADC=1) implements chains and rings, a
two-dimensional network (ADC=2) can implement mesh grids, a three-di-
mensional (ADC=3) can implement cubes, and so on. Both incomplete
(missing links) and irregular networks (with missing nodes and links) are
supported for each dimension class, shown in Fig. 5.

 Fig. 5. Message based communication in two-dimensional networks using delta-distance vector

routing. Networks with incomplete (missing links) and irregular (missing nodes) topolo-

gies are supported by using smart routing routes.

The main problem in message-based communication is routing and thus
addressing of nodes. Absolute and unique addressing of nodes in a high-
density sensor network is not suitable. An alternative routing strategy is del-
ta-distance routing, used by SLIP. A delta-distance vector Δ specifies the
way from the source to a destination node counting the number of node
hops for each dimension.
A message packet contains a header descriptor specifying the type of the

NODE
1

NODE
2

NODE
3

NODE
4

NODE
5

NODE
6

NODE
9

NODE
10

NODE
11

NODE
12

Y

X

NODE
7

NODE
8

HDT PDT DATA

ADC

TYP

DSC
ASC Δ Δ1 Γ ω π

LEN

�� �� ���

�������

�� ��

����

��

��

�

!

��������
an Bosse et al. - 9 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
packet and the scalable parameters ASC, DSC, and ADC, shown in Tab. 2.
The network adress dimension ADC and the size class ASC reflect the net-
work topology, the data size class DSC the data payload. There are two dif-
ferent main message types: requests and replies.
A packet descriptor follows the header descriptor, containing: the actual

delta-vector Δ, the original delta-vector Δ0, a preferred routing direction ω,
an application layer port π, a backward-propagation vector Γ, and the length
of the following data part. The total bit length of the packet header depends
on the {ASC, DSC, ADC} scalable parameter tuple setting, which optimises
application specific the overhead and energy efficiency (spatial & tempo-
ral). Each time a packet is forwarded (routed) in some direction, the delta-
vector is decreased (magnitude) in the respective dimension entry. For ex-
ample, routing in x-direction results in: Δ1=Δ1−1. A message has reached

the destination iff Δ=0 and can be delivered to the application port π. There
are different smart routing rules, applied in order showed below until the
packet can be routed (or discarded), shown in Alg. 1. First the normal XY
routing is tried, where the packet is routed in each direction one after anoth-
er with the goal to minimize the delta count of each particular direction. If
this is not possible (due to missing connectivity), the packet is tried to send
to the opposite direction, marked in the gamma entry Γ part of the message
packet descriptor. Opposite routing is used to escape small area traps,
backward routing is used to escape large area traps or to send the packet
back to the source node (packet not deliverable). The routing decision is
based on the actual message entries {Δ,Γ,ω} and achieves adaptive routing
reflecting the actual network topology and the path the message already
had travelled, including back-end traps, resulting in alternative paths by
choosing different routing directions.

 Tab. 2. SLIP message format (HDT: header descriptor, PDT: packet descriptor,)

Entry Size [bits] Description

HDT:ADC 2 Address Dimension Class

HDT:ASC 2 Address Size Class

HDT:DSC 2 Data Size Class

HDT:TYP 2 Message type = {Request, Re-
ply, Alive, Acknowledge}

PDT:Δ Num(ADC)*Bits(ASC) Actual delta vector
an Bosse et al. - 10 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
A message is only send to a neighbour node using the particular link iff the
connection to the neighbour node was negotiated and is fully operational
concerning the sending and the receiving of messages to and from the
neighbour node. For this purpose, the communication controller sends pe-
riodically ALIVE messages to all direct surrounding nodes and waits for
ACKNOWLEDGE messages send back from the neighbour node to check the
state of a connection. Non-existing nodes can be detected this way, too.

 Alg. 1. Smart Routing Protocol SLIP (simplified)

M: Message(Δ,Δ0,Γ,ω,π,Len,Data)

PRO smart_route(M):
 IF Δ=0 THEN DELIVER(M,π) ELSE
 TRY route_normal(M) ELSE
 TRY route_opposite(M) ELSE
 TRY route_backward(M) ELSE DISCARD(M);

PRO route_normal(M):
 FORONE δi ∈ Δ TRY minimize δi:
 route(Δ,M) WITH δi:=(δi+1)|δi<0 ∨(δi−1)|δi>0;

PRO route_opposite(M):
 FOREONE δi ∈ Δ TRY minimize δi:
 route(Δ,M) WITH δi:=(δi−1)|δi<0∨(δi+1)|δi>0;

PRO route_backward(M):
 SEND M (received from direction δi)
 back to direction -δi WITH Γi=-δi/|δi|;

The hardware implementation (using Conpro and standard cell ASIC syn-

thesis) requires about 244k gates, 15k FF ≅ 2.5mm2 assuming ASIC stan-
dard cell technology 0.18μm. The design is partitioned on programming

PDT:Δ0 Num(ADC)*Bits(ASC) Original delta vector

PDT:Γ 2*Num(ADC) Backward propagation vector

PDT:ω Bits(ADC) Preferred routing direction

PDT:π Bits(ASC) Application layer port

PDT:LEN Bits(DSC) Length of packet

DATA LEN*Bits(DSC) Data

Entry Size [bits] Description
an Bosse et al. - 11 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
level in 34 processes, communicating by using 16 queues.

5.2. Robustness and Stability Analysis

A simulation of a sensor network consisting nodes arranged in a two-di-
mensional matrix with 10 rows and 10 columns was performed by using a
multi-agent model. Messages and sensor nodes were modelled with
agents. A comparison of XY and smart routing using the routing rules intro-
duced in Alg. 1 is shown in Fig. 6. The diagram shows the analysis results
of operational paths depending on the number of link failures. A path is op-
erational (reachable) iff a node (device under test), for example node at po-
sition (2,2), can deliver a request message to a destination node at position
(x,y) with x≠2 ∨ y≠2, and a reply can be delivered back to the requesting
node. A failure of a specific link and node results in a broken connection be-
tween two nodes. The right image in Fig. 6 shows an incomplete network
with 100 broken links.
With traditional XY routing there is a strong decrease of operational paths,
from a specific node (DUT) to any other node, if the number of broken links
increases. Using smart routing increases the number of operational paths
significantly, especially for considerable damaged networks, up to 50%
compared with XY routing providing only 5% reachable paths any more.

 Fig. 6. Robustness analysis with results obtained from simulation (left) and snapshot of sensor

network (right)

Results from stability analysis shown in Fig. 7 point out unstable behaviour
under some particular network topologies. Though most situations are live

�	
�	����	�

�	������	�

���	���	�

����	����
an Bosse et al. - 12 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
lock free, there are some live locked messages circulating for ever in some
isolated traps, shown for example in the snapshot on the right side of this
figure.

 Fig. 7. Stability analysis (live locked messages, left) and snapshot of sensor network with

trapped messages (right)

6. Case Study I: Energy Management in Sensor Networks

Global energy management and distribution in sensor networks introduces
the first application for distributed computing using agents. Energy man-
agement in sensor network can take place:

Locally
ä At design time: low-power, application specific single System-On-

Chip design
ä At run-time: computation on demand, parametrization of algorithms

with cost-feedback analysis, control of duty-cycle of computation
and sleep mode

Globally
ä Distribution and collection of energy between nodes (demonstrated

by simulation and experiment in [11])
ä Energy Management by exploring and exploiting the neighbourhood

of nodes
ä The data processing system can use the communication unit to
an Bosse et al. - 13 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
transfer data (D) and superposed energy (E).

6.1. Implementation of Smart Energy Management with Agents

For the following smart energy management (SEM) implementation it is as-
sumed that nodes are supplied by local energy sources, for example by us-
ing energy harvesting techniques. Each node is capable of storing energy
in a local energy storage. Additionally, nodes can be supplied by energy
from neighbour nodes, transferred using the communication system.
Nodes having an energy level below a threshold ET can send out mobile

help agents. Help agents explore the neighbourhood of the requesting
node. The state of an agent is stored and transferred in messages. A mes-
sage can carry energy E, too. The sensor node itself contains a (non-mo-
bile) node agent performing local energy management.
There are four different agent classes:

NODE
The node agent implements inter-agent communication and local ener-
gy management. In the case the local stored energy is below a critical
threshold, it sends out HELP agents to the surrounding area.

HELP
The goal of this agent is to find a good node with local energy above a
certain threshold E>ET1. If such a node was found, the HELP agent
stays on this good node, and sends periodically DELIVER agents.

DELIVER
This agent has the goal to return energy to the requesting bad node
with help-on-way behaviour. Help-on-way behaviour supplies bad
nodes found on the return path before the final requesting node was
reached. This ensures a path from the source to the destination node
with fully operational nodes having enough energy stored for energy
distribution and propagation.

DISTRIBUTE
Very good nodes with an energy level above a threshold E>>ET1 can
distribute energy to surrounding neighbourhood with the goal to find
bad nodes.

The agent behaviour was implemented using the state-based agent model
introduced in section 2.. The agent state machine implementing the behav-
iour consists of only nine control states and nine state variables, preferred
an Bosse et al. - 14 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
for the low-resource state machine approach.

6.2. Simulation Results

A simulation was performed to carry out the suitability of the proposed
smart energy management approach using agents and the SeSAm Multi-
Agent System (MAS) simulation framework [10]. It is assumed that nodes
are charged randomly with energy from a local source and discharged by
activity. Though there are nodes collecting enough energy to be always op-
erational, there are nodes collecting not enough energy to be operational.
Without energy management, there are about 60% non-operational bad
nodes (E<250 energy units). Using smart energy management with agents,
the averaged fraction of bad nodes is below 10%, and permanently below
2%, shown in Fig. 8!

 Fig. 8. Left: Energy distribution population map without SEM, Right: with SEM (after 10000 time

steps)

Because energy transfer is not lossless the simulation contains simple effi-
ciency considerations. Actually the spatial agent exploration is initially ran-
dom, with limited memory of already visited nodes. This simple exploration
algorithm leeds to a low overall system efficiency below 10% (fraction of
distributed energy compared with total harvested energy). Future investiga-
tions must improve the exploration and distribution strategy with the goal to
meet higher energy efficiency.

7. Case Study II: Distributed Sobel Filter

Originally applied in image processing and computer vision, the Sobel filter
is a edge detection filter, which can also be used for crack detection in sen-
sorial materials. As an example, a simple technical structure such as a met-

�"���

�#���

�#���

�#����

�#����

�#����

�#����

�#����

�#����

$	%&
��	�

'�(
��)*
	
��	�

'	%��	�
��	�

an Bosse et al. - 15 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
al plate can be considered, on which a high number of strain-gauge
equipped sensor nodes have been distributed in a grid network [6]. The de-
velopment and growth of cracks due to overloading situations or material
fatigue changes the way load-induced strains propagate in the material.
These structural defects can appear as edges in the two-dimensional sen-
sor data field and can, in principle, be detected in a convolution process
with a Sobel operator. It is assumed that each network node can read data
from only one local sensor, i.e., an accumulated centralized view of the
structural state does not exist.
A Sobel operator matrix S is used for a neighbourhood operation on the
original image A composed of sensor data, for example a 4x4 matrix, and
each matrix entry represents a node in the sensor network. There are two
different operators, each for a different direction sensitivity (x/y), shown in
eq. 1.

 Eq. 1. Sobel operator definition and image convolution

 Eq. 2. Partial calculation of G-elements containing actual image value ax,y at node (x,y)

A μFORTH program executed on the proposed architecture in section 4.
implements a mobile agent moving and migrating through the area of inter-
est and performing the image processing. Initially, a master agent is sent to
the upper left corner node, sampling data and performing a partial image
convolution. Each node calculation carries out partial calculation of sum
terms of gi,j elements containing only the local sensor data ax,y, updating gi,j

with pseudo-code shown in Eq. 2 (assuming array index numbers within
range 1...N).
The FORTH program is compiled to a word-code machine program consist-
ing of about 600 words by using a μFORTH compiler. A word requires 2
byte of memory storage. Due to the low code size the entire program can
be fit in one message.

Sx
1 0 1–
2 0 2–
1 0 1–

Sy,
1 2 1
0 0 0
1– 2– 1–

Gx Sx A•=
Gy Sy A•=

,= =

gi j, ←gi j, s2 i– x 2 j– y+,+ ax y,⋅+

i j,()∀ x 1– x x, 1+{ , } y 1– y y, 1+{ , }× DO∈
an Bosse et al. - 16 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
To summarize, this case study showed the implementation of a complex al-
gorithm with multi-agent systems executable on single microchip nodes us-
ing code morphing for carrying computational results and the suitability of
the proposed runtime environment approach II.

8. Comparison and Conclusions

 Tab. 3. Comparison of the two data processing approaches for mobile agents

Table 3 compares both run-time architectures and agent implementations.
Both approaches allow the implementation of agent mobility and process-
ing on hardware single-chip level. Flexibility and design time versus re-
source requirements is the main difference. The state-machine based
approach I with fixed and hard implemented functional agent behaviour is
well suited for a small set of different agents with simple algorithm complex-
ity, whereas the code morphing approach II is suited for a larger set of dif-
ferent agents with higher algorithm complexity.
A program-controlled approach II is less power efficient and requires more
resources, but provides a higher lever of implementation and design free-
dom. The code morphing approach II reduces communication complexity.

Approach I. State-Machine Approach II. Code morphing

Agent behaviour is fixed, nodes must comply with pre-
viously defined common data
types and structures as well as
message formats.

not fixed, can change dynamical-
ly, and nodes do not require
knowledge of data structures and
types in advance.

Functional behaviour is
implemented

statically in local data processing
machine.

dynamically in programming
code, which can be modified by
the program itself.

Implementation in Hardware, single chip Hardware, single chip

Agent state is kept in data storage code, stacks, and data storage

Message size depends
on

data complexity and size, data and
control state, but is independent of
code complexity.

code complexity and size, but is
independent of state.

Hardware resources are small (< 1M eq. logic gates includ-
ing storage)

large (> 1M-3M eq. logic gates in-
cluding storage)

Storage resources are small (< 5000 register cells) large (> 10000 register cells)

Speed is high (1-2 clock cycles per state-
ment)

medium (5-20 clock cycles per
core word instruction)

Power consumption is low and depends on code com-
plexity.

medium and is independent of
code complexity.
an Bosse et al. - 17 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
One main issue addressed in the design of multi-agent systems is cooper-
ation and communication of agents, and to ensure how can agents under-
stand each other. Message based systems require some kind of
communication language. Each node, which processes agents must com-
ply about well known data structures used for inter-agent communication,
fixed at design time. There are only limited capabilities to handle data type
inconsistency and the non-availability of expected data. In contrast, the
code based approach II uses named code and data words resolved by a
dictionary, with a well known interface, and the capability to check and han-
dle type inconsistency. The hardware implementation of the dictionary and
the operational interface produces a fairly high overhead of the resources
compared with the traditional shared data approach using memory refer-
ences (as used in the state-machine-based approach I).
The smart routing protocol must be modified to overcome the message live
lock issues and to improve stability by preserving reliability and robustness.
Future experimental investigations using real sensor networks with differ-
ent classes of data processing algorithms should clarify the advantages
and disadvantages of both approaches.

9. References

[1] M. Wooldridge, An Introduction to MultiAgent Systems, Wiley
(2009)

[2] S. Bosse and D. Lehmhus, Smart Communication in a Wired Sen-
sor- and Actuator-Network of a Modular Robot Actuator System
Using a Hop-Protocol with Delta-Routing, Proceedings of Smart
Systems Integration Conference, Como, Italy, 23-24.3.2010 (2010)

[3] S. Bosse, Hardware-Software-Co-Design of Parallel and Distribut-
ed Systems Using a unique Behavioural Programming and Multi-
Process Model with High-Level Synthesis, Proceedings of the
SPIE Microtechnologies 2011 Conference, 18.4.-20.4.2011,
Prague, Session EMT 102 VLSI Circuits and Systems

[4] S.Bosse, F. Pantke, and F. Kirchner, Distributed Computing in Sen-
sor Networks Using Multi-Agent Systems and Code Morphing, IC-
AISC Conference, Prague, 2012

[5] A. Kent and J. G. Williams (Eds.), Mobile Agents, Encyclopedia for
an Bosse et al. - 18 - 2013

DOI:10.1007/s11740-012-0420-8 Prod. Eng. Res. Devel. Special Issue

Stef
Computer Science and Technology, New York: M. Dekker Inc.,
1998

[6] F. Pantke, S.Bosse, D. Lehmhus, and M. Lawo, An Artificial Intelli-
gence Approach Towards Sensorial Materials, Future Computing
Conference, 2011

[7] H. Peine and T. Stolpmann, The Architecture of the Ara Platform for
Mobile Agents, MA '97 Proceedings of the First International Work-
shop on Mobile Agents,Springer-Verlag London, 1997

[8] A.I. Wang, C.F. Sørensen, and E. Indal., A Mobile Agent Architec-
ture for Heterogeneous Devices, Wireless and Optical Communi-
cations, 2003

[9] K. Römer and F. Mattern, The design space of wireless sensor net-
works, IEEE Wireless Communications 11 (2004), Dezember, Nr.
6, p. 54-61

[10] F. Klügel, The Multi-Agent Simulation Environment SeSAm, In: H.
Kleine Büning (Ed.): Proceedings of Workshop "Simulation in
Knowledge-based Systems", Paderborn, April 1998

[11] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, Power manage-
ment in energy harvesting sensor networks, ACM Transactions on
Embedded Computing Systems, vol. 6, no. 4, p. 32-es, 2007.
an Bosse et al. - 19 - 2013

	1. Introduction
	2. Distributed Data Processing with State-based Agents
	3. Approach I: Non-programmable Message-Based/State Machine Agent Processing Architecture
	4. Approach II: Programmable Multi-Agent Processing Architecture using Code Morphing
	5. Robust and Reliable Communication for Mobile Agent Systems
	5.1. Reliable Communication Protocol SLIP
	5.2. Robustness and Stability Analysis

	6. Case Study I: Energy Management in Sensor Networks
	6.1. Implementation of Smart Energy Management with Agents
	6.2. Simulation Results

	7. Case Study II: Distributed Sobel Filter
	8. Comparison and Conclusions
	9. References

