
JavaScript Agent Machine (JAM) 1

A. Agent Input-Ouput System (AIOS)

The Agent Input-Output System (AIOS) is the interface and abstraction
layer between agents programmed in AgentJS and the agent processing
platform (JAM). Furthermore, it provides an interface between host appli-
cations and JAM. A JAM instance consists of multiple modules:

• Node

• World

• Code/Process (control and modification)

• Tuple space

• Signals

• Mobility

• Network and Communication (AMP)

• Scheduler

• Security

• Watchdog

• Artificial Intelligence (optional):

• Machine Learning (ML)

• Constraint Solving Programming (CSP)

• Logic Programming and Satisfiability Solver (SAT)

The modules are accessible (directly or indirectly) by the agents via the
AIOS, shown in Fig. 1.

Agent Input-Ouput System (AIOS)



JavaScript Agent Machine (JAM) 2

Host
Program JAMlib AIOS Agent

Agent

Agent

Modules

M1 Mi Mn

Figure 1. Interface between agents and JAM and between JAM and a host
application by the Agent Input-Output System (AIOS).

A.1 Agent Roles

Security is provided by the agent platform by assigning execution roles
and levels to agents. The roles are dynamic and can be changed at run-
time. The execution of agents and the access of resources is controlled by
those roles to limit Denial-of-Service attacks, agent masquerading, spying,
or other abuse:

There are four levels:

1. Guest (not trustful, semi-mobile)

2. Normal (maybe trustful, mobile)

3. Privileged (trustful, mobile)

4. System (highly trustful, locally only, non-mobile)

The lowest level (0) does not allow tuple space access, agent replication,
migration, or the creation of new agents. The JAM platform decides the
security level for new received agents. An agent cannot create agents with
a higher security level than its own. The highest level (3) has an extended
AIOS with host platform device access capabilities. Agents can negotiate

Agent Input-Ouput System (AIOS) Agent Roles



JavaScript Agent Machine (JAM) 3

resources (e.g., CPU time) and a level raise secured with a capability-key
that defines the allowed upgrades (defined by the services, e.g., agent role
service or other resources like tuple space access). The system level can
not be negotiated. The capability is node ans service specific. A group of
nodes can share a common key (identified by a server port). A capability
consists of a server port, a rights field, and an encrypted protection field
generated with a random port known by the server (node) only and the
rights field.

Among the AIOS level, other constrain parameters can be negotiated using
a valid capability with the appropriate rights:

• Scheduling time (longest slice time for one activity execution, default
value is between 20-200ms)

• Run time (accumulated agent execution time, default is 2s)

• Living time (overall time an agent can exist on a node before it is re-
moved, default is 200s)

• Tuple space access limits (data size, number of tuples)

• Memory limits (fuzzy, usually the entire size of the agent code includ-
ing private data, actually not limited)

• Network links and connectivity (supported by the AMP module)

A.2 Agent Scheduling

JS has a strictly single-threaded execution model with one main thread,
and even by using asynchronous callbacks, these callbacks are executed
only if the main thread (or loop) terminates. This is the second hard limi-
tation for the execution of multiple agent processes within one JAM plat-
form. Agent processes are scheduled on activity level, and a non-
terminating agent process activity would block the entire platform. Current
JS execution platform including VMs in WEB browser programs provide
no reliable watchdog mechanism to handle non-terminating JS functions or
loops. Although some browsers can detect time outs, they are only capable
to terminate the entire JS program. To ensure the execution stability of the
JAM and the JAM scheduler, and to enable time-slicing, check-pointing
must be injected in the agent code prior to execution. This step is per-
formed in the code parsing phase by injecting checkpoint functions CP()
at the beginning of a body of each function contained in the agent code,

Agent Input-Ouput System (AIOS) Agent Scheduling



JavaScript Agent Machine (JAM) 4

and by injecting the CP function calls in loop expressions. Although this
code injection can reduce the execution performance of the agent code
significantly, it is necessary until JS platforms are capable of fine-grained
check-pointing and agent process scheduling with time slicing. On code-
to-text transformation (e.g., prior to a migration request), all CP calls are
removed.

AIOS provides a main scheduling loop. This loop iterates over all logical
nodes of the logical world, and executes one activity of all ready agent
processes sequentially. If an activity execution reaches the hard time-slice
limit, a SCHEDULE exception is raised, which can be handled by an op-
tional agent exception handler (but without extending the time-slice). This
agent exception handling has only an informational purpose for the agent,
but offers the agent to modify its behaviour. All consumed activity and
transition execution times are accumulated, and if the agent process
reaches a soft run-time limit, an EOL exception is raised. This can be han-
dled by an optional agent exception handler, which can try to negotiate a
higher CPU limit based on privilege level and available capabilities (only
level-2 agents). Any ready scheduling block of an agent and signal
handlers are scheduled before activity execution.

After an activity was executed, the next activity is computed by calling the
transition function in the transition section (or just applying an uncondi-
tional value). If the activity is blocked (agent is suspended, except signal
handling), the next transition is computed after the resume of the agent
process.

In contrast to the AAPL model that supports agent process blocking on
statement level, eventually allowing multiple blocking statements (e.g.,
IO/tuple-space access) inside activities, JS is not capable of handling any
kind of process blocking of user instructions (there is no process and
blocking concept). For this reason, an activity may only contain one
blocking statement, and the blocking is applied to the entire activity after
the control flow of an activity function terminates.

Multiple blocking statements require scheduling blocks that can be used in
AgentJS activity functions (at the end) handled by the AIOS scheduler.
Blocking AgentJS functions with a pending result use common callback
functions to pass function results to the agent, e.g.,
inp(pat,function(tup){..}).

A scheduling block consists of an array of functions (micro activities), i.e.,
B(block) = B([function(){..}, function(){..},...]).,

Agent Input-Ouput System (AIOS) Agent Scheduling



JavaScript Agent Machine (JAM) 5

executed one-by-one by the AIOS scheduler. Each function may contain a
blocking statement at the end of the body. The this object inside each
function references always the agent object. To simplify iteration, there is
a scheduling loop constructor L(init, cond, next, block,
finalize) and an object iterator constructor I(obj, next,
block, finalize), used, e.g., for array iteration. Agent execution is
encapsulated in a process container handled by the AIOS. An agent
process container can be blocked waiting for an internal system-related IO
event or suspended waiting for an agent-related AIOS event (caused by the
agent, e.g., the availability of a tuple). Both cases stops the agent process
execution until an event occurred.

The basic agent scheduling algorithm is shown in the following algorithm
and consists of an ordered scheduling processing type selection, i.e., parti-
tioning agent processing in agent activities, transitions, signals, and
scheduling blocks. In one scheduler pass, only one kind of processing is
selected to guarantee scheduling fairness between different agents. There is
only one scheduler used for all virtual (logical) nodes of a world (a JAM
instance). A process priority is used to alternate activity and signal han-
dling of one agent, preventing long activity and transition processing de-
lays due to chained signal processing if there are a large number of sig-
nals pending.

∀ node ∈ world.nodes do
∀ process ∈ node.processes do
Determine what to do with prioritized conditions:

Order of operation selection:
0. Process (internal) block scheduling [block]
1. Resource exception handling
2. Signal handling [signals]

- Signals handled if process priority<HIGH
- Signal handling increase process priority

temporarily to allow low-latency activity
and transition function scheduling!

3. Transition execution
4. Agent schedule block execution [schedule]
5. Next activity execution

- Lowers process priority
if process.blocked or process.dead or
process.suspended and process.block=[] and
process.signals=[] or

Agent Input-Ouput System (AIOS) Agent Scheduling



JavaScript Agent Machine (JAM) 6

process.agent.next=none and process.signals=[] and
process.schedule=[]
then do nothing

elseif not process.blocked and process.block≠[]
then execute next block function

elseif agent resources check failed
then raise EOL exception

elseif process.priority < HIGH and process.signals≠[]
then handle next signal, increase process.priority

elseif not process.suspended and process.transition
then get next transition
or execute next transition handler function

elseif not process.suspended and process.schedule≠[]
then execute next agent schedule block function

elseif not process.suspended
then execute next agent activity and

compute next transition,
decrease process.priority

Algorithm 1. JAM Agent Scheduler

Agent Input-Ouput System (AIOS) Agent Scheduling


	JavaScript Agent Machine (JAM)
	Agent Input-Ouput System (AIOS)
	Agent Roles
	Agent Scheduling



