
DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
Distributed Computing in Sensor Networks Using
Multi-Agent Systems and Code Morphing

Stefan Bosse(1,3), Florian Pantke(2,3), Frank Kirchner(1,3)

University of Bremen, Department of Computer Science, Work-
group Robotics, Germany(1), TZI Centre for Computing and
Communication Technologies,(2), University of Bremen, ISIS
Sensorial Materials Scientific Centre, Germany(3)

Abstract
There is a growing demand for distributed computing and systems in sen-
sor networks. We propose and show a parallel and distributed runtime en-
vironment for multi-agent systems that provides spatial agent migration
ability by employing code morphing. The focus of the application scenario
lies on sensor networks and low-power, resource-aware single System-On-
Chip designs, used in sensor-equipped technical structures and materials.
An agent approach provides stronger autonomy than a traditional object or
remote-procedure-call based approach. Agents can decide for themselves
which actions are performed, and they are capable of reacting on the envi-
ronment and other agents with flexible behaviour. Data processing nodes
exchange code rather than data to transfer information. A part of the state
of an agent is preserved within its own program code, which also imple-
ments the agent’s migration functionality. The practicability of the approach
is shown using a simple distributed Sobel filter as an example.

1. Introduction and Overview

Recently emerging trends in engineering and microsystem applications
such as the development of sensorial materials pose a growing demand for
autonomous networks of miniaturized smart sensors and actuators embed-
ded in technical structures [8]. With increasing miniaturization and sensor-
actuator density, decentralized network and data processing architectures
are preferred or required.
We propose and show a spatial distributed and execution-parallel runtime
environment for multi-agent systems providing migration mobility using a
 Bosse et al. - 1 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
code morphing approach (Distributed-Parallel Code-Morphing Runtime En-
vironment: abbrev. DPCM-RE) in which computing nodes exchange code
rather than data to transfer information, basically similar to work discussed
in [2]. The advantage of this distributed computation model is the computa-
tional independence of each node and the eliminated necessity for nodes
to comply with previously defined common data types and structures as
well as message formats. Computing nodes perform local computations by
executing code and cooperate by distributing modified code to execute a
global task. Multi-agent systems providing migration mobility using code
morphing can help to reduce the communication cost in a distributed sys-
tem [5]. The distributed programming model of mobile agents has the ad-
vantage of simplification and reduction of synchronization constraints owing
to the autonomy of agents.
Traditionally, mobile agents are executed on generic computer architec-
tures [6][7], which usually cannot easily be reduced to single-chip systems
as they are required, for example, in sensorial materials with high sensor
node densities.
We present a hardware architecture for mesh networks of data processing
nodes, which can be organized, for example, in a two-dimensional grid to-
pology with each node having connections to its up to four direct neigh-
bours. An example of such a network with dimensions 2 x 2 is illustrated in
figure 1. A fault-tolerant message based communication system SLIP is
used to transfer messages (containing code) between nodes using smart
delta-distance-vector routing [4]. The network topology can be irregular, for
example, depending on design or owing to temporary failures or permanent
physical defects of the existing communication links. Smart routing is used
to deliver messages on alternative routes around partially connected or de-
fective areas.
A central issue was the design of the data processing architecture used for
the execution of code, and especially regarding support of code morphing.
A multi-parallel stack-based multi-stack, zero-operand FORTH machine
was chosen leading to small programs, low system complexity, and high
system performance [9]. The architecture design focuses on low-power
and resource-aware single System-On-Chip (SoC) design on RT level,
though both hardware and software implementations were created. Though
the FORTH programming language is high level, it can be directly mapped
 Bosse et al. - 2 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
to and executed on the machine level.

 Fig. 1. Distributed data processing framework with four nodes

A complete runtime unit consists of a communication system with a smart
routing protocol stack, one or more FORTH processing units with a code
morphing engine, resource management, code relocation and dictionary
management, and a scheduler managing program execution and distribu-
tion, which are normally part of an operating system which does not exist
here.

2. Implementing Migrating Agents with FORTH Using Code
Morphing

FORTH is an interpreted language whose source code is extremely com-
pact. Furthermore, FORTH is extensible, that is new language constructs
can be defined on the fly by its users [3].
A FORTH program can be sent to and executed on any node in the net-
work. A FORTH program contains built-in core instructions directly execut-
ed by the FORTH processing unit and user defined high-level word and
object definitions that are added to and looked up from a dictionary data
structure. This dictionary is a central part for the implementation of distrib-
uted systems and mobile agents. Words can be added, updated, and re-
moved (forgotten), controlled by the FORTH program itself (already

SCHEDULER

Code

DPU

DPU DPU

DPU

RPC

COMMUNICATION SLIP

DICTIONARY

SCHEDULER

DPU

DPU DPU

DPU

RPC

COMMUNICATION SLIP

DICTIONARY

Code

SCHEDULER

DPU

DPU DPU

DPU

RPC

COMMUNICATION SLIP

DICTIONARY

Code

SLIP

SCHEDULER

DPU

DPU DPU

DPU

RPC

COMMUNICATION SLIP

DICTIONARY

�������	�
����
������������	������
��
�	���������������
��������������
�	�������
������������������	�������
��������	���
��������������������
���������

�������	���	
����������������������
���������� �
	���

���!�������	�������
�������"#$%&
����������'���	��	���	

$�(!�$�������	����	��(����'���)���

+'�!�������+�����'��	������	������

(���!�,����
�����������
�"#$%&
���������������
 Bosse et al. - 3 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
considered in [3]). User-defined words are composed of a sequence of
words.
FORTH maintains two push-down stacks, providing communication be-
tween FORTH words. Most instructions interact directly with the data stack
SS, the second stack is known as the return stack RS and is used to hold
return addresses enabling nesting. Literal values are treated as special
words pushing the respective value on the data stack. Due to the LIFO na-
ture of the stacks, FORTH instructions use a postfix notation (reverse polish
notation, RPN). FORTH provides common arithmetic data manipulation in-
structions and high-level control constructs like loops and branches.
For mobile agents, not only code may migrate from node to node but also
state information of the agent, at least a subset of the process state has to
be transferred with the agent. On the one hand the process state of a stack-
based FORTH program and execution environment consists at of the data
values stored on the data stack (and in an additional random-access data
segment), on the other of the control state defined by the program counter
and the values on the return stack . A program capable to modify its own
code can store a subset of its process state by modifying code, applied to
both data and control instructions.
A program can fork a modified (or unmodified) replica of itself for execution
on a different processing unit (locally parallel or globally distributed). This
feature enables migration of dynamic agents holding locally processed in-
formation and a subset of execution state in their code.
The simple FORTH instruction format is an appropriate starting point for
code morphing, i.e., the ability of a program to modify itself or make a mod-
ified copy, mostly as a result of a previously performed computation. Calcu-
lation results and a subset of the processing state can be stored directly in
the program code which changes the program behaviour. The standard
FORTH core instruction set was extended and adapted for the implemen-
tation of agent migration in mesh networks with two-dimensional grid topol-
ogy.
Table 1 gives a summary of the new words provided for code morphing.
These instructions can be used to modify the program behaviour and en-
able the preservation of the current program execution state. In our system,
a FORTH program is contained in a contiguous memory fragment, called a
frame. A frame can be transferred to and executed on remote nodes and
 Bosse et al. - 4 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
processing units. Modification of the program code is always performed in
a shadow frame environment, which can be identical with the execution
frame. This is the default case used for in-place code modification. One or
more different frames can be allocated and used for out-of-place modifica-
tion, required if the execution frame is used beyond code morphing.
All code morphing instructions operate on the shadow frame. Both the ex-
ecution and the shadow frames have their own code pointer.

 Tab. 1. FORTH extensions providing program code morphing

The STOC command is used to store the data that is part of an agent’s pro-
cess state for migration. The TOC and COPYC instructions can be used to
indirectly save the control state of the agent as they enable reassembly and
modification of code fragments depending on the current data- and control
state. Alternatively, the process control state can be saved by implementing
a Finite-State Machine (FSM) in FORTH, for instance, using a switch
branching statement, and saving the state variable in code before the mi-
gration step with STOC.
Table 2 explains several FORTH extensions which can be used for the
modification of the dictionary and for the creation of objects. These instruc-

Word Stack Description

c! (frame --)
(RESET --)

SETC: Sets frame of shadow environment for code morphing.
RESET sets code pointer of shadow frame to the beginning of
shadow frame.

>>c (m1 m2 --) COPYC: Switches to morphing state: Transfers code from pro-
gram frame between markers m1 and m2 into shadow frame (in-
cluding markers).
Only marker and STOC commands are interpreted.

>c (--) TOC: Copy next word from program frame into shadow frame.

s>c (n --) STOC: Pop n data value(s) from stack and store values as word
literals in shadow frame

<m> (--) MARKER: set a marker position anywhere in a program frame.

<m>@ (-- marker) GETMARKER: get a marker (maps symbolic names to unique
numbers)

<m>! (--) SETMARKER: Sets shadow code pointer after marker in shadow
frame. Marker is searched in shadow frame, thus either in-place
of execution frame or in a new created/copied shadow frame
(containing already code and marker). Can be used to edit a
partial range of shadow frame code using STOC and TOC in-
structions.
 Bosse et al. - 5 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
tions allow mobil agents to create (allocate) and import memory, word, and
inter-process communication (IPC) objects. Finally, FORTH instructions re-
quired for program frame execution and distribution are shown. Always the
contents of a shadow frame is sent to and executed on a different or remote
processor.

 Tab. 2. Some FORTH extensions providing 1. dictionary modification and object creation,
and 2. multi-processing support and frame distribution.

3. Runtime Environment and Data Processing Architecture:
DPCM-FORTH

The principal system architecture of one FORTH processing unit (PU)
part of the DPCM-FORTH runtime environment is shown in figure 2. A
FORTH processing unit executes instructions from a node-shared code
segment CS. The code segment is partitioned into frames. The next instruc-
tion to be executed is pointed by a program counter PC. A FORTH program
containing top-level instructions and word definitions belongs to one partic-
ular frame, thus the code segment can hold various programs (and word
definitions). The actual executed program is referenced by a frame pointer

Instruction Description

VARIABLE x
ARRAY [n,m] x
VARIABLE* x
ARRAY* [n,m] x

Creates a new variable or array and allocates memory. The first
two definitions create public objects and they are added to the
dictionary. The star definitions create private objects.

OBJECT MUTEX x
OBJECT FRAME f

Creates (allocates) a new IPC or frame object. The object is add-
ed to the dictionary. Other supported IPC object types: SEMA,
EVENT, TIMER.

IMPORT VARIABLE x
IMPORT OBJECT x

Imports a variable or object from the dictionary. If not found, then
the program execution terminates (return status 0).

dx dy fork Send contents of shadow frame for execution to node relative to
actual node. If dx=0 and dy=0, then the shadow frame is execut-
ed locally and concurrently on a different FORTH processing unit.
The fork instruction returns the frame sequence or processing
unit number.

id join Waits for termination of a forked frame or the reception and exe-
cution of a reply program frame.

status return Finishes execution of a program. If status is zero, no reply is gen-
erated. If status is equal to -1, an empty reply is generated. Final-
ly, if status is equal 1, the content of the shadow frame is sent
back to the original sender of the execution frame.
 Bosse et al. - 6 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
FRAME. In addition to the frame to be executed (the execution frame) there
is a shadow frame environment with its own set of program and frame point-
ers, PC" and FRAME". This shadow frame, which is initially identical to the
execution frame, is used for code morphing. Local data manipulation per-
formed by the program uses a data stack SS and return stack RS, known
from traditional FORTH architectures. Data manipulation with random-ac-
cess behaviour is possible and operates on a separate data segment DS
shared by all PUs of the same network node. There is a third stack ES used
for exception handling.

 Fig. 2. Runtime architecture consisting of FORTH data processing units, shared memory
and objects, dictionary, scheduler, and communication.

A FORTH processing unit initially waits for a frame to be executed. During
program execution, the FORTH processing unit interacts with the scheduler
to perform program forking, frame propagation, program termination, object
creation (allocation), and object modification. The set of objects consists of
the Interprocess-Communication objects (IPC: mutex, semaphore, event,
timer) and frames. There are private and public (node-visible) variables and
arrays. All program frames have access to public variables by looking up
references stored in the dictionary. Program word, memory variable, and
object relocation are carried out by using a frame-bounded lookup table
LUT.
The scheduler is the bridge between a set of locally parallel executing

SCHEDULER

EXECi {FRAME}

CS

PC FRAME

 FORTH
 PROCESSING UNIT

SS

DS

RS

FRAME

FRAMES VMS

FRAME''

PC'' FRAME''

FRAME ES

DATA
STACK

RETURN
STACK

EXCEPTION
STACK

CODE SEGMENT DATA SEGMENT

DICTIONARY

LUT

OBJ

 FORTH
 PROCESSING UNIT

SLIP / RPC Communication

FORK
NEW

RETURN

TRY
RAISETOR

FROMR

VALUE
PICK

FETCH
STORE
 Bosse et al. - 7 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
FORTH processing units, and the communication system, a remote proce-
dure call (RPC) interface layered above SLIP, building a DPCM RE. At least
two processing units are required to perform synchronous remote code ex-
ecution (one for the actual program execution performing the request, and
one for the reply).
The RPC processing unit receives messages (packets) from the protocol
stack and transforms them into program frames, finally passed to the
scheduler. The scheduler takes a free FORTH processor from the proces-
sor pool (queue) VMS and schedules execution of the frame. During pro-
gram execution, the scheduler can be used to send a program frame to a
different node, passed to the RPC processing unit.
All program processing units share a common dictionary, code, and data
segment. There is a pool of objects OBJ (memory, IPC, frames), managed
by the scheduler and a garbage collector.

3.1. From High-Level Modelling to a Hard- and Software Imple-
mentation of a Node
The runtime environment is modelled on behavioural level using a high-lev-
el multi-process programming language with atomic-guarded actions and
interprocess-communication (communicating sequential processes) [1].
Mostly, processes communicate with each other using queues, for exam-
ple, the FORTH processor or the RPC and SLIP implementation process-
es. The architecture and implementation model can be matched to different
word and data sizes and sizes of code and data segments. The number of
FORTH processors included in one node can be chosen in the range from
one to eight. The communication system is scalable and adaptable to dif-
ferent environments, too. Because the implementation of the FORTH run-
time system is static, a pool of objects (memory, IPC, frames) is created,
and during runtime those objects are allocated from and returned to the
pool. The entire design is partitioned into 43 concurrently executed pro-
cesses, communicating using 24 queues, 13 mutex, 8 semaphores, 52
RAM blocks, 59 shared registers, and 11 timers.
All architecture parts of the DPCM-FORTH node, including communication,
FORTH processing units, scheduler, dictionary and relocation support, are
mapped entirely to hardware multi-RT level and a single SoC design using
the ConPro compiler [1]. The resource demand depends on the choice of
 Bosse et al. - 8 - 2012

D O I 1 0 . 1 0 0 7 / 9 7 8 - 3 - 6 4 2 - 2 9 3 5 0 - 4 _ 5 0 P r o c . I C A I S C 2 0 1 2

S t e
design parameters and is between 1M - 3M equivalent gates (in terms of
FPGA architectures).
The same multi-process programming model and source code used for the
synthesis of the hardware implementation can be compiled into software
with the ConPro compiler, too. Multi-processing is simulated with light-
weight processes. The software model has same function as the hardware
model (though with different latency and data through-put). A DPCM-
FORTH compiler transforms source code into machine instructions.

4. Distributed Sobel Filter: an Example

After the main part of this paper dealt with the details of the hardware archi-
tecture and FORTH extensions that we introduced for the implementation
of mobile agents by means of code morphing, this section gives an example
of how the described runtime environment can be used. We proof the ap-
proach with a FORTH implementation of a distributed Sobel operator. Orig-
inally applied in image processing and computer vision, this edge detection
filter can also be of use for crack detection in the aforementioned applica-
tion scenario of sensorial materials. It is assumed that each network node
can read data from one local sensor, that is, an accumulated central view
of the structural state does not exist.
A Sobel kernel S is used for a neighbourhood operation on the original im-
age composed of sensor data, for example, a 4x4 matrix A, and each matrix
entry represents a node in the sensor network. There are two different op-
erators, each for a different direction sensivity (x/y), shown in Eq. 1. The
output image G results from a convolution operation.
The FORTH program implementing an agent moving and migrating through
the area of interest is shown in Ex. 1. Initially, a master agent is sent to the
upper left corner node, sampling data and performing a partial image con-
volution. Each node calculation carries out sum terms of gi,,j elements con-

taining only the local sensor data a[x,y], with pseudo-code shown in Eq. 2.

 Eq. 1. Sobel operator definition and image convolution

Sx
1 0 1–
2 0 2–
1 0 1–

Sy,
1 2 1
0 0 0
1– 2– 1–

Gx Sx A•=
Gy Sy A•=
,= =
f a n B o s s e e t a l . - 9 - 2 0 1 2

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
 Eq. 2. Calculation procedure for G-elements with actual image value a[x,y] at node (x,y)

The results are stored in the agent program code using code morphing and
finally the agent travels to the next node, and so forth. If the last node has
been visited, then the agent is sent to the first initial node and initiates a re-
ply to be sent to the original node requesting the filtered image data.

 Ex. 1. FORTH implementation of the Sobel filter agent. Note: only the x-sensitive Sobel op-
erator is shown here.

The FORTH program consists of five words (private, indicated by the star
after the definition command). In lines 9 to 15 arrays a and g are defined,
either private or public depending on the location of the agent. Public arrays
are required for the processing of the final result and creation of a reply

gi j, ←gi j, s2 i– x 2 j– y+,+ ax y,⋅+

i∀ x 1– x x, 1+{ , } j∀ y 1– y y, 1+{ , } DO∈,∈

VARIABLE* x
VARIABLE* y
VARIABLE* dir
VARIABLE* data 4 CONSTANT N
<x> 1 x !
<y> 1 y !
<dir> 1 dir !
IMPORT WORD getdata
x @ 1 = y @ 1 = and if
 ARRAY [N,N] a (original sensor data)
 ARRAY [N,N] g (convoluted data)
else
 ARRAY* [N,N] a (original sensor data)
 ARRAY* [N,N] g (convoluted data)
then
ARRAY* [3,3] s (sobel operator)
1 0 -1 -2 0 -2 1 0 -1 s >>[]
(a11,a12,a13,a14,a21,...,a44)
<matrix_start>
 <matrix_a> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a >>[]
 <matrix_g> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g >>[]
<matrix_end>

:* sobel
 x @ x @ 2 - do (pos. x-1..x+1 => array x-2..x)
 I a! (save index i in register a)
 y @ y @ 2 - do (pos. y-1..y+1 => array y-2..y)
 I b! (save index j in register b)
 a@ 0 >= b@ 0 >= and a@ < N and b@ < N and if
 a@ b@ [g] @ (fetch g[i,j])
 2 a@ - x @ + (2-i+x)
 2 b@ - y @ + (2-j+y)
 [s] @ data @ * (s[i’,j’]*a[x,y])
 + a@ b@ [g] ! (store g[i,j])
 then
 loop
 loop
;
:* sample
 getdata dup
 x @ 1 - y @ 1 - [a] !
 data ! (save sampled data for local computation)
;
:* update
 (
 transfer data of array to stack and then
 convert values to word literals in program code
)
 N 1- 0 do
 I a!
 N 1- 0 do
 I b!
 a@ b@ [g] @
 loop
 loop
 <matrix_g>! N N * s>c
 N 1- 0 do
 I a!
 N 1- 0 do
 I b!
 a@ b@ [a] @
 loop
 loop
 <matrix_a>! N N * s>c
;

:* reply
 RESET c!
 <reply_header_start>@ <reply_header_end>@ >>c
 <matrix_start>@ <matrix_end>@ >>c
 <reply_start>@ <reply_end>@ >>c
;
:* migrate
 (
 migrate to next node depending on {x,y,dir} settings
)
 dir @ 1 = if
 x @ 4 = if
 y @ 1 + <y>! 1 s>c (update y counter)
 <dir>! -1 1 s>c (revert propagation direction)
 0 1 fork
 else
 x @ 1 + <x>! 1 s>c (update x counter, goto right)
 1 0 fork
 then
 else
 x @ 1 = y @ N <> and if
 y @ 1 + <y>! 1 s>c (update y counter)
 <dir>! 1 1 s>c (revert propagation direction)
 0 1 fork
 else
 y @ N = if
 (create reply and go back to origin)
 reply
 0 -4 fork
 else
 x @ 1 - <x>! 1 s>c (update x counter, goto left)
 -1 0 fork
 then
 then
 then
 x @ 1 = y @ 1 = and if
 (master agent, wait for reply)
 OBJECT EVENT sobel_await
 sobel_await #await
 (propagate reply to original sender of agent)
 update reply
 forget a forget g (cleanup dictionary)
 1 return
 else
 0 return
 then
;
sample
sobel
update
migrate

(not reached)
<reply_header_start>
 IMPORT ARRAY [N,N] a
 IMPORT ARRAY [N,N] g
 IMPORT OBJECT sobel_await
<reply_header_end>
<reply_start>
 sobel_await #wakeup
 0 return
<reply_end>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
 Bosse et al. - 10 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
agent performed by the master agent at origin node (1,1). In line 16 the So-
bel s matrix is defined and initialized with (constant) values (line 17). The
>>[] operator copies values taken from the stack to the respective array.
The main word execution sequence is defined in lines 113-116.
First, a new data value is sampled from the node’s AD converter by calling
the word sample word. The value is saved in the image array a and vari-
able data. The [a]operator calculates the memory address required for
the matrix access. After data sampling, the Sobel computation is performed
calling the word sobel. Two nested loops (lines 25 to 37) compute sum
terms of elements of array g containing only the actual sampled image val-
ue a[x,y]. The x and y positions are stored in their respective variables.
The migrate code distinguishes different cases regarding the agent’s cur-
rent location. When code morphing is done, the modified program frame is
dispatched to the next node. After all nodes have been visited, the agent
sends back a reply agent to the requesting node. This transmits the final re-
sult of the distributed computation (line 94).
The program is compiled to a machine program consisting of 599 words.
The final reply code requires only 103 words.
The size of the program code (determining the communication cost) of the
migrating agent performing the computations can be reduced by using a
two-level agent system. The arrays a, g and s (with initialization) and the
definitions for the words sample, sobel, and update, which remain un-
touched by code morphing the entire time, are distributed and permanently
stored using a distribution agent before the computation agent is started.
In this case, the words will be stored in the public dictionary of each node.
The program frame of the distribution agent is held permanently until the
words are removed from the dictionary, cleaned up finally by the garbage
collector.

5. Summary, Conclusion, and Outlook

This paper introduced a hardware architecture and runtime environment
specifically designed towards the implementation of mobile agents by using
dynamic code morphing under the constraints of low power consumption
and high component miniaturization. It uses a modified and extended ver-
sion of FORTH as the programming language for agent programs. The run-
 Bosse et al. - 11 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
time environment is modelled on the behavioural level using a multi-
process-oriented programming language and can be embedded in a single-
SoC hardware design. A functional equivalent piece of software can be syn-
thesized and executed on a generic desktop computer, alternatively. To
show the viability of the presented distributed and parallel computing ap-
proach, a filtering algorithm was borrowed from the field of image process-
ing and applied in the application scenario of sensorial materials. In the
given example, multiple mobile agents move through a network of sensor
nodes, jointly executing a spatially distributed data processing task. Calcu-
lation results and a subset of the agents execution state are preserved with-
in the agents program code during migration to different network nodes.
The size of the migrating code can be significantly reduced in size by de-
coupling functions that remain unaffected by code morphing during opera-
tion from the migrating agent program and distributing them in the data
processing network beforehand.
Synchronous inter-agent communication can be carried out by using reply
agents send back to a parent agent waiting for the reception and execution
of the reply.
Future work will be the development and practical evaluation of sophisticat-
ed distributed load and defect detection algorithms on this architecture for
use in sensorial materials.

10. Bibliography

[1] S. Bosse, Hardware-Software-Co-Design of Parallel and Distribut-
ed Systems Using a unique Behavioural Programming and Multi-
Process Model with High-Level Synthesis, Proceedings of the SPIE
Microtechnologies 2011 Conference, 18.4.-20.4.2011, Prague,
Session EMT 102 VLSI Circuits and Systems

[2] L. Iftode, C. Borcea, and P. Kang, Cooperative Computing in Sen-
sor Networks, In: Ilyas, M. (ed.) Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems. CRC Press, Boca
Raton (2004)

[3] E. D. Rather, D. R. Colburn, C. H. Moore, The evolution of Forth,
Proceedings SIGPLAN Not. 28, 3 (March 1993)

[4] S. Bosse, D. Lehmhus, Smart Communication in a Wired Sensor-
 Bosse et al. - 12 - 2012

DOI 10.1007/978-3-642-29350-4_50 Proc. ICAISC 2012

Stefan
and Actuator-Network of a Modular Robot Actuator System using a
Hop-Protocol with Delta-Routing, Proceedings of Smart Systems
Integration conference, Como, Italy, 23-24.3.2010 (2010)

[5] A. Kent, J. G. Williams (Eds.), Mobile Agents, Encyclopedia for
Computer Science and Technology, New York: M. Dekker Inc.,
1998

[6] H. Peine, T. Stolpmann, The Architecture of the Ara Platform for
Mobile Agents, MA '97 Proceedings of the First International Work-
shop on Mobile Agents,Springer-Verlag London, 1997

[7] A.I. Wang, C.F. Sørensen, and E. Indal., A Mobile Agent Architec-
ture for Heterogeneous Devices, Wireless and Optical Communi-
cations, 2003

[8] F. Pantke, S.Bosse, D. Lehmhus, M. Lawo, An Artificial Intelligence
Approach Towards Sensorial Materials, Future Computing Confer-
ence, 2011

[9] P. Koopmann, Stack Computers: the new wave, 1989
 Bosse et al. - 13 - 2012

	1. Introduction and Overview
	2. Implementing Migrating Agents with FORTH Using Code Morphing
	3. Runtime Environment and Data Processing Architecture: DPCM-FORTH
	3.1. From High-Level Modelling to a Hard- and Software Implementation of a Node

	4. Distributed Sobel Filter: an Example
	5. Summary, Conclusion, and Outlook
	10. Bibliography

