
Tiny Machine Learning Virtualization for IoT and
Edge Computing using the REXA VM

Stefan Bosse
Dept. Mathematics and Computer Science

University of Bremen
Bremen, Germany

ORCID 0000-0002-8774-6141

Christoph Polle

Measurement Systems & Monitoring
Faserinstitut Bremen

Bremen, Germany
polle@Faserinstitut.de

Abstract— Tiny Machine Learning is a new approach that

is being used for data-driven prediction classification and
regression on microcontrollers using local sensor data. The
models are typically learned off-line and sent to the
microcontroller for use as binary objects or frozen and
converted static data. This approach is not universal or
flexible. The REXA VM, which can virtualize embedded
systems and sensor nodes and includes a general machine
learning framework that supports arbitrary dynamic artificial
neural network and decision tree models, is introduced in this
study. The models are delivered as text files with highly
compressed program code that are enclosed in code frames
with embedded data (model parameters). The VM offers
fundamental computations for ANN and DT models
(Microservices). Using a decompiler, models can be updated
(retrained) and sent to other nodes (mobile models). It can be
demonstrated that virtualization using a bytecode machine and
just-in-time compiler is still appropriate and effective for
extremely low-resource processors.

Keywords— Virtualization, Virtual Machines, Tiny ML,
Sensor Networks, Embedded Systems, Microservices

I. INTRODUCTION
Advanced and reliable data processing architectures are

needed to handle a large rise in device density and sensor
deployment towards smart and self-*; sensors, addressing
ubiquitous computing, edge computing, and distributed
sensor networks. Tiny Machine Learning (ML) is an
emerging and challenging field [1]. ML models are
commonly computed using high precision floating point
arithmetic. Tiny embedded systems provide only integer
arithmetic (8-32 bits), requiring either model transformation
and freezing [2] or direct training using integer arithmetic
[3], ideally on the target device itself [4]. Ultra low-power
devices introduce additional constraints on the computation
of Deep learning (DL) models [5], and hardware designs
gains attraction [6], which are addressed in this work, too.

This paper introduces and analyzes a real-time capable
and extensible application-specific stack Virtual Machine
(REXA-VM) with some unique and special features that can
be implemented in tiny embedded systems with a
microcontroller and as little as 8 KB data RAM and 16 kB
code ROM. Virtualization in combination with Machine
Learning (ML) is a necessity for unified sensor and data
processing in large-scale and heterogeneous networks [7].
One major feature is a scriptable Tiny ML interface and
signal analysis numeric using 16 bits scaled arithmetic. In
contrast to common integer-based ML models using 8 bit
scaled arithmetic [3], this VM supports 16 and 32 bit
operations natively, preventing common arithmetic overflow
and underflow issues. The real-time capability of REXA VM
is important to ensure operational and event-reaction stability

during time-consuming ML computations. The VM consists
of a bytecode compiler and interpreter. The input is always in
text format using a simple stack programming language
similar to Forth, suitable for hardware implementations in
embedded systems [8]. Using an ASCII text code and data
format is a key feature required for the deployment of the
REXA VM in highly heterogeneous environments including
different host platform byte orders. One of the benefits of a
virtualization layer is the freedom of implementation
technologies. Virtualization and their limitations in
embedded systems are discussed extensively in [9].
Therefore, an alternative implementation of the REXA-VM
in FPGAs (or ASICs) with an RTL architecture can be
provided, too. The novelties of this work are:

1. A unified and customizable software and hardware
architecture of the scriptable and real-time capable
stack-based VM (HW/SW co-design at the architecture
level), supporting Tiny ML for highly compact
Artificial Neural Networks (ANN) and decision tree
(DT) computations;

2. Highly customizable machine Instruction Set
Architecture (ISA) supporting 16 and 32 bit arithmetic;

3. High-speed just-in-time text-to-bytecode compiler
(always bound to VM, code is always exchanged in text
format) and optional bytecode-to-text decompiler
supporting mobile code (and mobile ML models);

4. Data is embedded in code, not needing any heap and
dynamic memory management except for code frames,
e.g., embedding and storing an ANN and its parameter
inside program code.

Non-continuous energy supply, e.g., supplied to the
sensor node from outside sources using RFID/NFC, is
another challenge introducing hard power constraints and a
suitable degree of real-time capable data processing under
energy and time constrains. The real-time capability of the
VM (not discussed in this paper) is a key feature for running
computational intensive tasks without compromising IO
event handling (i.e., the reactivity of the device). It is
assumed that a REXA VM node is accessed remotely via
wireless communication. Program text code can be directly
send to the VM for compiling and processing.

The following sections introduce the relevant features and
architectures of the REXA VM, with a focus on ML. An
extended use-case demonstrates finally the suitability of the
presented virtualization and programming interface for on-
device damage prediction. An extended pre-print version can
be found in [14].

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Fig. 1. Basic REXA-VM architecture with integrated JIT compiler, stacks, and bytecode processor

II. VIRTUAL MACHINE ARCHITECTURE
The REXA VM is a highly configurable high-level stack

processor that executes bytecode generated from textual
program code, ensuring high portability, flexibility, and
robust code processing in heterogeneous environments
(including the deployment of different versions of the REXA
VM). Basically, the entire ISA can be customized, creating a
balance between generality and application-specific
optimizations. Most instructions are zero operand operations
accessing data entirely on the VM stacks (in the program
code model, they are post-fix instructions because data was
stored by previous operations).

The following Fig. 1 shows the principle architecture of
the REXA VM and its just-in-time (JIT) compiler. The
architecture details depend on the configuration (single- or
multi-tasking, number of stacks, and customized extensions
and accelerators). The principle architecture is equal for
software and hardware implementations. The native compiler
is available in software and in hardware, but can be replaced
by a lightweight pure Forth-based implementation. Profiling
is an optional feature used for predictive real-time
scheduling, as well as the energy-aware real-time scheduler.

The code segment (CS) is the central storage for source
code, bytecode, and embedded data. The CS is partitioned
into dynamically sized code frames, commonly assigned to a
task (depending on the scheduling model). The scheduler
controls and monitors the bytecode loop (vmloop). Code
operations can suspend task execution by waiting for events,
handled by an event table. The Input-Output System (IOS,
similar to the widely used Foreign Function Interface,
extends the code and data space of the VM). The VM
architecture is optimized for resource sharing, e.g., using an
ADC sample buffer for computations from VM
programming level, too.

The main user program memory is the code segment of
the VM is the code segment, (CS). A code segment is
organized in byte cells and has a static fixed size. The new

program code allocates a part of the CS, called a code frame
(CF). A code frame can contain top-level operations, word
definitions that can be added to the VM dictionary, and data
variable allocations embedded in the code frame (there is no
heap memory), either directly between Forth instructions or
at the end of the code frame program (e.g., non-initialized
array data). After the code frame program processing
terminates (called the end operation), the code frame with all
of its data is removed. Alternatively, the code frame can be
kept alive after termination, and exported code word
references can be used from later code frames. This feature
enables incremental and partitioned program execution.

In single-tasking mode, the code segment is commonly
incremental and persistent. That means, program code is
added to the CS incrementally. Each new code fragment is
compiled and immediately executed. The current program
terminates with the end instruction, with or without
persistence. Without persistence, the code is removed after
termination. If the code fragment is persistent, a new code
fragment is stored at the end of the previous one. Persistent
code cannot be removed, only resetting the CS is possible.
Only the current code fragment can be scheduled, without
branching to other code regions. In multi-tasking mode, the
code segment is partitioned into dynamically sized code
frames. Code frames can be removed later, and code frames
can be linked. Scheduling can branch to other code frames.
Each code frame is associated with a task, except code
frames that terminated with persistence.

A code frame merges code and data. The data (scalar and
array variables) can only be accessed by code inside the code
frame. Operations can be bound to named words, which can
be exported in the global dictionary and accessed from other
code frames (and tasks). If a function word is exported, the
code frame is locked and is not removed if the code
processing reaches the end (instruction).

Temporary (short lifetime) data is stored and manipulated
directly on fixed-size stack memories:

1. The Data Stack (DS) holds most of the processing data
and instruction operands;

2. The Return Stack (RS) for function calls (not accessible
from the programming level for security reasons);

3. Optional a loop stack (FS) used for loop counters and
secondary user data (can be merged with RS for
memory efficiency).

All non-temporary data is either embedded in code
frames or provided by the host application via the Input-
Output System layer (IOS) API.

The stack cell width is always 16 bits (single word
width). The REXA VM supports double word operations, too
(as a configurable option). Double words are composed of
two single data words (word order depends on the native byte
order of the underlying processor). Double words can be
directly read and written from and to stacks by the VM
(single memory access). The access time of multiplexed
single and double word access to the stacks in software by
memory pointer casting is commonly identical (assuming 32-
bit microprocessors). The hardware implementation can split
the double word access into two memory cycles or use 32-bit
memory for stacks, always providing one-cycle memory
access. For performance reasons, the hardware
implementation can implement stacks with block RAM
components and single registers holding the first top values,
enabling parallel computations on stack elements. The push
and pop operations involved in most of the VM instruction
code words modify stack pointers (dstop, rstop, fstop). For
security reasons, the return stack (which holds code pointers
on function calls) should not be accessed directly by program
code.

Besides hardcore stacks implemented inside the VM,
softcore stacks can be implemented on the programming
level in data arrays (embedded in code frames). Push and pop
operations are provided by the core instruction word set.

A. Compiler
The compiler translates the source code text into

bytecode instructions. It is a just-in-time (JIT) compiler that
can compile code incrementally and on demand. Since the
ISA of stack processors consists mostly of zero-operand
instructions, it supports fine-grained compilation at the token
level. The source text can be directly stored in the code
segment referenced by a code frame (or any other data
buffer, alternatively). Most instruction words can be directly
mapped to a consecutively numbered operation code.
Therefore, the compiler translates the source code into
bytecode directly in-place, i.e., by replacing the text with
bytecode, saving additional target memory buffers. An
instruction word consists of at least one character, and thus
can always be replaced by the op-code (one byte). Although
a literal value can consist of only one digit and the data of a
single word value occupies two bytes, there is always a space
or newline character after a literal value, providing the
required data space. Extension of the current code frame at
the end is always possible (as long as there is free space in
the CS). One exception is a double word literal value
requiring at least two characters and the suffix "l", followed
by an obligatory separator character and the space, providing
four bytes of data space in total.

Data is either stored on the stacks during run-time or is
embedded in the code frame during translation. Scalar
variables and initialized arrays can always be embedded in-

place. Non-initialized arrays are appended at the end of the
compiled code frame.

The compiler is part of the VM and is processed directly
on the (low-resource) embedded system or in hardware. This
ensures security checks and guarantees that a task assigned to
a code frame can only access its private data. Finally, the
textual interface ensures compatibility and interoperability
among different VM versions (with different binary ISA, but
a common sub-set). Alternatively, most parts of the compiler
can be implemented in the high-level VM language itself. In
this case, the VM only provides basic compiler operations
like a tokenizer and a dictionary.

Fig. 2. The hierarchical compiler LUT architecture used for fast text-to-
bytecode translation. After tokenization of the input text, direct op-code
encoding and updates of tables are performed.

To enable fast compilation (with respect to low-resource
microcontrollers), no traditional lexer and parser are used.
Instead, the parsing process uses two different approaches:

1. A perfect hash table [10,11] (PHT) for core words
(more than 100 core words) with a constant search time.
Because the hash index is directly linked to the
operational code, the hash table itself must be saved. A
hash function, on the other hand, cannot detect words
that do not match any of the core word set. Therefore, a
string table is required containing all core words
indexed by the same hash index, finally comparing a
hash-predicted word from this table with the current
word to be parsed.

2. A Linear Search Table (LST) with non-constant search
time. The LST implements an iterative and sequential
character search in a compacted linear array, as
discussed below. The LST needs more (ROM) space
but, on average, less machine instructions (basic
operations) for search than the PHT.

There are additional dictionaries, e.g., the global
instruction word dictionary. Dictionary words and local data
variables are handled with simple hashing and small look-up
tables (LUT) storing collisions by linear search. The
hierarchical look-up table architecture for fast text-to-
bytecode translation is shown in Fig. 2. The REXA VM
bytecode consists of operational code and data. Most
instructions are zero-operand post-fix operations, simplifying
the bytecode format significantly (and the code decoder,
especially addressing hardware implementations). Literals
are divided into signed short and double words (data widths

of 14 and 30 bits, respectively). A bytecode code frame can
be decompiled to text again, supporting mobile code.
Embedded initialized data, e.g., parameter arrays of an ANN,
can be modified at run-time (update training), and the
modified values are contained in the text code that can be
send to another device.

B. Bytecode Interpreter and Multitasking
The VM architecture and code processing can be either

single-tasked or multi-tasked (using the code frame mode).
Although the VM can be replicated and share the same code
segment and global objects, providing multi-threading (real
multi-tasking) with parallel execution on multi-core
processors or replicated RTL hardware, multi-tasking is a
scheduling without concurrency, i.e., tasks are co-routines.
The priority can be changed by the scheduler only if there are
energy conflicts. There are event-based and computation-
based tasks. Both differ in their run-time behaviour. Negative
priorities indicate a short-running event-based IO task;
positive priorities indicate a greedy computational task.
Besides multi-tasking, which provides a scheduled
programming and code execution model without parallelism,
multiple VM instances can be easily composed into a parallel
VM. Each parallel VM shares the same code interpreter
(decoder) and code segment (and compiler, if implemented),
but with individual stack segments and VM registers. The
bytecode interpreter is basically the instruction decoder with
a large conditional branch construct (case selector statement)
mapping an operational code onto operational code
statements, mostly consisting of stack manipulations. Due to
the consecutive numbering of operational codes in the range
{0,1,..,opcodemax-1}, a direct branch table can be used,
providing an instruction decoder with a constant run-time,
which is important for real-time scheduling. Commonly, C
compilers detect this feature and create a branch (look-up)
table implicitly. The instruction decoder and execution unit
are automatically created from the perfect hash table with a
switch-case construct. The operational statements are macro
definitions provided by the programmer in a separate header
file. Computed goto statements can be created, alternatively.
But not all compilers, especially commercial versions
tailored for embedded systems, support computed go-to
statements (basically only supported by GNU compilers).
The VM bytecode interpreter is fully binary compatible
among different software versions as long as the same word
set is used. Any changes to the core word set (number of ops
or names) invalidate binary compatibility, which is the
reason for bundling the VM execution with the compiler.

II. TINY MACHINE LEARNING AND DIGITAL SIGNAL
PROCESSING

Data-driven modelling is used in a wide range of
classification and regression applications. Often, data-driven
trained models (predictor functions) are fully trained before
being used (application). Commonly, the model parameters
as well as the variables are represented by floating-point data
types and processed by floating-point hardware arithmetic,
which is not available on low-resource microcontrollers.
Basically, it is possible to use fixed-point arithmetic (e.g.,
with 16 bit encoded values), at least for classification tasks.
Distributed machine learning is a specific class of ensemble
learning based on the divide-and-conquer principle. Each
node provides a local state estimation or classification based
solely on local data, which is then globally fusioned to a
global state. Assuming such an architecture, predictive
classification (and possibly regression) is appealing for
implementation on the sensor node level and directly

processed by the microcontroller or FPGA processing unit, a
concept known as "tiny machine learning." One prominent
sub-class of predictive data-driven models are Artificial
Neural Networks (ANN), which are basically non-linear
function graphs.

An ANN can be organized in layers, and each layer
consists of a given number of functional nodes (neurons).
Each functional node performs a data fusion by summing the
products of all input variables x (vector) with a weight
parameter vector w. Finally, the resulting scalar value t is
passed to a commonly non-linear transfer function g(t),
which provides the node's output. For the computation of one
node, vector operations are required.

To compute (apply) an ANN, only some specific vector
arithmetic operations and a unified vector and matrix data
structure are required. A challenge is the reduction in value
of resolution and precision. ANNs are typically trained using
floating-point arithmetic (at least with a single 32-bit
precision).The VM addressed in this work supports only 16-
and 32-bit integer arithmetic. The transformation of already
trained networks into integer interval arithmetic requires
additional scaling vectors and scaling operations. Each ANN
can be functionally decomposed into vector operations. All
functions fi (representing one layer) and the output function g
use matrix and vector operations, which can be implemented
in software as well as hardware and computed directly with
integer arithmetic. Only the activation (transfer) functions
(e.g., sigmoid or soft-max) require approximated fixed-point
(integer) implementations of the real-valued functions,
typically using a combination of piecewise multi-point
regression and look-up tables. Not fully connected ANNs are
computed in the same way as fully connected ANNs, but
they produce sparse vectors and matrices, resulting in a large
number of null (useless) operations.

The vector operations in REXA VM's hardware
architecture can be parallelized, balancing resource
occupation and speed. The ARM Cortex M0-M3 processors
do not provide parallel vector operations (such DSP
operations were added first in generation 4).

The Input-Output System (IOS) implemented in the
REXA VM is similar to the widely used Foreign Function
Interface (FFI) that provides unified host application
integration and extends the instruction word set with bridged
native C/C++ functions (or hardware extensions).
Additionally, host application variables (scalar and numerical
array types) can be directly accessed from VM programs.
Most of the DSP and ML operations are not core part of the
core REXA-VM engine. Instead, they are added on demand
by the host application from customizable libraries.

A. Signal Interface
A sensor node processes sensor data, which is commonly

sampled by the node itself using analog-digital conversion
(ADC). Active measuring techniques necessitate the
generation of a stimulus, which is typically controlled by the
sensor node (e.g., a digital-to-analog converter (DAC)).VM
programs can access the signal acquisition layer by using a
signal device interface provided by the sensor node host
application via the IOS. Sampled sensor data is stored in a
dedicated buffer, commonly filled automatically during the
sampling phase via direct memory access (DMA). The
sample buffer can be directly accessed by the VM or at
program level. DMA sampling with triggering, e.g., on a
specific threshold level, typically utilizes a ring buffer
memory architecture. Reading the sample buffer must also be

done cyclically in this case, beginning at a specific top buffer
position. Due to hard resource constraints, the sample buffer
is also used for digital signal processing, e.g., applying filters
to the data in-place.
const FREE 10 const SINGLE 4 const HIGH 1
FREE 1 HIGH 100 0 adc (Start ADC)
1000 1 sampled await (Suspend task)
<0 if error endif
var peak 0 peak !
var offset sample0 read !
var pos
1024 0 do (Iterate over sample buffer)
 offset @ samples read
 dup peak @ > if peak ! i pos ! else drop endif
 offset @ 1 + 1024 mod offset !
loop
." Peak: " peak @ ." at " pos @ . cr
Ex. 1. Synchronous AD conversion with post processing

B. Digital Signal Processing
The set of DSP operations is provided via the FIOS layer

API and can be extended by the host application. Only fixed-
point integer arithmetic is supported. The input and output
scaling of arithmetic and numerical functions is fixed. Basic
operations required for typical signal processing and analysis
tasks are provided, like scalable trigonometric functions, hull
and filter functions.

Trigonometric functions and functions composed of
trigonometric functions are implemented with segmented
linear and non-linear look-up tables. For example, the error
of the discrete sigmoid function is always less than 1%, while
only requiring 30 bytes of LUT space and less than 10 unit
operations, as shown in Alg. 1. These software functions can
be immediately implemented in hardware, too. The LUTs are
computed with Alg. 2.
static ub1 sglut13[] = { <24 values> };
static ub1 sglut310[] = { <6 elements> };
// y scale 1:1000 [0,1], x scale 1:1000
sb2 fpsigmoid(sb2 x) {
 sb2 y;
 ub1 mirror=x<0?1:0;
 if (mirror) x=-x;
 if (x>=10000) return mirror?0:1000;
 if (x<=1000) {
 y = 500+(((x*231)/1000));
 return mirror?1000-y:y;
 } else if (x<3000) {
 ub2 i10 = ((fplog10((x/5)|0)/2))-65;
 y = ((sb2)sglut13[i10])+731;
 return mirror?1000-y:y;
 } else {
 ub2 i10 = ((fplog10((x/10)|0)/10))-14;
 y = ((sb2)sglut310[i10])+952;
 return mirror?1000-y:y;
 }
 return 0;
}
static ub1 log10lut[] = { <100 values> }
// x-scale is 1:10 and log10-scale is 1:100
sb2 fplog10(sb2 x) {
 sb2 shift=0;
 while (x>=100) { shift++; x/=10; };
 return shift*100+(sb2)log10lut[x-10];
}

Alg. 1. Range-segmented and LUT-based implementation of the sigmoid
function with less than 1% approximation error (using approximated LUT-
based log10 function)

The LUT tables can be computed as follows:

 10 10log lut log 100 : ,0 99
10
iint i i

   = ∈ ≤ ≤   
   

 (1)

The fpsigmoid function LUTs are computed iteratively using
the fplog10 function, described by the following pseudo
code algorithm Alg. 2 (accuracy is plotted in Fig. 3):

sglut13 := []
for x=1 to 2.95 step 0.05 do
 i10 := int(fplog10(int(x*1000/5))/2)-65
 if sglut13[i10] = undefined then
 sglut13[i10] := int(sigmoid(x)*1000)-731
 endif
done
sglut310 := []
for x=3 to 9.9 step 0.1 do
 i10 := int(fplog10(int(x*1000/10))/10)-14
 if sglut310[i10] = undefined then
 sglut310[i10] := int(sigmoid(x)*1000)-952
 endif
done

Alg. 2. Computation of the LUTs for the fixed-point sigmoid function

Fig. 3. Accuracy of fixed-point approximations for log10 and sigmoid
functions

C. Artificial Neural Network (ANN)

An ANN consists of two parts:

1. The data, i.e., for parameter, input, and output variables;
2. The structure and functions processing the data.

For the sake of simplicity, fully connected networks are
assumed, but any irregular network structure is a sub-set of a
fully connected structure and can be used with the following
operational architectures, too. In contrast to common ANN
software frameworks, the REXA VM provides only core
vector operations. The parameter data is embedded in a code
frame by using the initialized array constructor. Both
parameter and input/output data can be stored in the program
code frame, shown in the next section.

D. Vector Operations
The core set of vector operations provided by the REXA

VM supporting integer arithmetic ANN computations can be
summarized to:

1. Element-wise vector operations (e.g., vecmul: op1vec
op2vec dstvec scalevec);

2. Dot-product operation performing a sum of product data
fusion (vecprod: veca vecb scale → number);

3. A folding operation for node layer computations
(vecfold: invec wgtvec outvec scalevec)

4. A mapping operation applying a function elementwise
(vecmap: srcvec dstvec func scalvec)

5. And a generic scaling operations (vecscale: srcvec
dstvec scalevec).

Vector operations are scaled using supplied scaling
vectors (scalevec). Vector operations always operate on
single data words (16 bit), but internally 32 bit arithmetic is
used to avoid overflows. To scale to signed 16 bit integer,
some of the operations use a scale factor or scale factor
vector (negative scale values reduce, positive expand the
values by the scale factor) to avoid overflows or underflows
in following computations, similar to scaled tensors in [4,12].
There are vector loading, scaling, combination, and mapping
functions, which provide basic vector ANN functions
operating on embedded or external array data.

The operations are defined by the following formulas:

() ()

()

()

() () () ()()

1 1 2 2

1

,1 ,2 ,
1 1 1

1 2

, , ,..,

,

, , ,..,

, , ,..,

,

T
n n

n

i i
i

Tn n n

i i i i i i n
i i i

T
n

vecmul a b a b a b a b

dotprod a b a b

fold a c a c a c a c

map a f f a f a f a

n a b c n m

=

= = =

= ⋅ ⋅ ⋅

= ⋅

 
= ⋅ ⋅ ⋅  

 

=

= = = ⋅

∑

∑ ∑ ∑

 

 







 

 (2)

E. Decision Trees
Decision trees, as lightweight predictor models well

suited for tiny embedded systems, can be efficiently stored in

Linear Search Tables (LST), as introduced earlier for
compiler parsing.

Decision trees consist of nodes associated with input
variables xj or output variables yk (and specific outcomes of a
prediction). Directed edges connecting nodes are functional
evaluations of a node variable.

┌───┬────┬─────┬──────┬─────┬────┬───┐
│ x │ op │ len │ val1 │ bra │ .. │ x │...
└───┴────┴─────┴──────┴──┬──┴────┴───┘
 < │ ▲
 > │ │
 = └─────────┘
 ~

 ────┬─────┬──────┬─────┬───┬─────┐
.. op │ len │ val1 │ bra │ y │ val │ ..
 ────┴─────┴──────┴─────┴───┴─────┘
Def. 1. Format of a Linear Search Tree (LST) implementing a decision tree

There are three basic operations: Binary relation (</>),
equality (=), and nearest value approximation (≈). The data
format is shown in Def. 1. Each slide starts with the input
variable to be evaluated (or target for output), the operation
applied to choices, a field specifying the number of choices,
and value-branch pairs.

III. USE-CASE: MATERIAL-INTEGREATED STRUCTURAL
HEALTH MONITORING

The following complete example Ex. 2 code shows how
simple it can be to implement ANNs in REXA Forth, by
implementing a three layer network with [14, 8, 2] neurons
(based on [13]). The 14 input features are computed using a
signal hull analysis (maximum height, width, and time
position) of sensor data from multi-path GUW
measurements. The signal hull computation was originally
performed by a Hilbert transformation, later replaced by a
rectifying function and a first order recurrent low-pass filter.
The network parameters (lines 3-27) are embedded in the
code and are used by the network forward activation function
forward (lines 31-47). The computations are performed by
using the pre-defined universal vector operations, introduced
in the previous section. The vector operations determine the
size parameters of the vectors (or matrix) automatically.
Impressive performance results are presented in Sec. V. The
ANN feature vector is computed at run-time by multi-path
GUW signal sampling (6 transducers) and simple signal
analysis (lines 49-57). In line 50 the pitch signal waveform
generator applied to one transducer is started (DAC), and in
lines 51 the ADC measurement is started (triggered by the
DAC generator). The await suspends the task execution until
the ADC conversion is done. The results of the signal
analysis (hull computation using rectification and applying a
low-pass filter) are stored in the ANN input feature vector
(input). The compiled program code requires about 800 bytes
only.
 1 (Signed 16 bit integer type arrays)
 2 (Input Layer)
 3 array input 14
 4 array biasI { 1 2 .. 14 }
 5 array wghtI { 1 2 .. 14 }
 6 array scaleI { 1 2 .. 14 }
 7 array activI 14
 8
 9 (Hidden Layer)
10 array wghtH1 {
11 1 2 .. 14 (Neuron 1)

12 1 2 .. 14 (Neuron 2)
13 ...
14 1 2 .. 14 (Neuron 8)
15 }
16 array biasH1 { 1 2 .. 8 }
17 array scaleH1 { 1 2 .. 8 }
18 array activH1 8
19
20 (Output Layer)
21 array wghtO {
22 1 2 .. 8
23 1 2 .. 8
24 }
25 array biasO { 1 2 }
26 array scaleO { 1 2 }
27 array output 2
28
29
30 (Forward activiation of network)
31 : forward
32 (Evaluate input layer --)
33 input wghtI actI scaleI vecmul
34 (Add bias)
35 actI biasI actI 0 vecadd
36 (Apply activation function w/o scaling)
37 actI acI $ sigmoid 0 vecmap
38 (Compute hidden layer activations)
39 actI wghtH1 activH1 scaleH1 vecfold
40 activH1 biasH1 activH1 0 vecadd
41 (Apply activation function w/o scaling)
42 activH1 activH1 $ sigmoid 0 vecmap
43 (Compute output layer activations)
44 activH1 wghtO output scaleO vecfold
45 output bias output 0 vecadd
46 output output $ sigmoid 0 vecmap
47 ;
48 (Start path measurements and feature extr.)
49 6 0 do
50 CHIRP 10 2 1000 i dac (Start DAC)
51 EXTTRIG 1 HIGHGAIN 1000 i adc (Start ADC)
52 1000 1 sampled await (Suspend task)
53 sample 0 1024 vecabs
54 sample 0 1024 10 lowp
55 sample 0 1024 vecmax (-- index val)
56 input i 2 * cell+ !
57 input i 2 * 1 + cell+ !
58 loop
59 forward
60 output vecprint cr
61 (Done)

Ex. 2. The example ANN consists of 14 input variables and neurons, one
hidden layer of 8 neurons, and two output neurons. The ANN is
implemented entirely in one code frame (about 400 bytes). The model
parameter values are only for illustration.

The initialized vectors are stored in-place in the code
frame, the non-initialized vectors are stored at the end of the
code frame (extending the code frame by the compiler). If
there is an additional update training function adapting
weight and bias parameters, the code frame containing the
ANN can be decompiled to text and send back to the source
or any other device for application.

IV. EVALUATION
The main advantage of the proposed VM architecture is

the capability to create the main and crucial parts of the VM
using code generators and adapt the VM architecture to
specific applications and host architectures. All data (and
code) memory is allocated statically at compile time. There is
no dynamic memory management requirement. The compiler
works in-place, i.e., it compiles source text stored in free
regions of the CS directly in-place into bytecode (no
additional storage space is required during compilation).
Although the data, return, and loop stacks DS, RS, and FS,
respectively, can be small, multi-threading and multi-tasking
increase the stack storage requirements by the number of
maximally supported threads and scheduled tasks.

Using the widely deployed 32 bit STM32 ARM Cortex
M0 microcontrollers, a typical REXA VM implementation
with CS=1024, DS=256, RS=128, FS=64 cells, and 101
Words, requires about 8 kB RAM and 8 kB ROM resources
(not included IOS attached data and code). The Tiny ML
code for ANNs requires additionally about 500 Bytes RAM
and 1 kB ROM. The basic execution speed of the VM is
about 14 KIPS / MHz clock frequency, i.e., 70 clock cycles
and ARM machine code instructions are required for the
execution of one VM bytecode instruction. The average
forward computation time for an ANN with 24 neurons (see
use-case) requires about 16 ms / MHz. The compiler can
compile about 2000 IPS / MHZ. The complete code example
from the use-case section consists of about 500 words
requiring about 250 ms / MHz compile time.

The hardware resources required for typical REXA VM
configurations (CS=4096, DS=1024, SS/RS=32, Words=84)
for a SRAM-based FPGA XC3S500e is about 2000/4500
digital logic slices with a block RAM occupation of 9/20,
showing the suitability of the REXA VM architecture for
hardware implementations, too.

The DSP/ANN module of the REXA VM was tested with
different ANN configurations, with 3-5 layers, and 2-64
neurons per layer. The measured results for the ARM Cortex
M0, STM32 L031 and F103 microcontrollers are shown in
Fig. 4 and Tab. 1 (larger networks can only be handled by the
F103 due to RAM allocation).

Layers Neurons Code [Bytes] Forward Time [ms/MHz]

[2,3,1] 6 237 7.7

[4,3,2] 9 281 8.2

[4,6,2] 12 336 9.1

[4,8,2] 14 372 11.2

[4,8,4] 16 416 10.5

[4,8,8,2] 22 601 14.4

[4,8,8,4] 24 645 16.6

[4,8,8,8,4] 32 874 21.0

[4,32,2] 38 804 17.1

[8,32,32,8] 80 3813 43.5

[8,64,32,8] 112 6566 58.3

TAB. 1. NORMALIZED ANN RESULTS ON STM32 PLATFORM DEPENDING ON
THE NETWORK CONFIGUARTION (NODES PER LAYER)

Fig. 4. ANN forward computation times for one neuron and per MHZ clock
frequency (different ANN architectures with 3-5 layers and 2-64 neurons
per layer)

The code size includes the ANN parameter data, input
and output vectors, and the forward computation function.
The code size ranges from 200 to 6K bytes for 6-100
neurons. As shown in Fig. 4, the computation time for one
neuron decreases with increasing network size. This is a
result of the VM execution overhead that dominates for very
small network sizes. The average computation time is about
700 μs / neuron / MHz for the ARM Cortex STM32
microcontrollers. Note that the ARM processors
underperform compared with modern Intel x86/x64
processors (but still have an efficiency ratio of 1:100 if power
and chip area are considered). Typical computation times for
medium sized networks are in the millisecond range, fully
suitable for on-node classification.

V. CONCLUSIONS AND OUTLOOK
This work presented a virtualization layer (VM) for tiny

embedded systems with very low resources, addressing the
processing of ML models on-device in particular. Currently,
only already trained ML models can be processed on the
device and require a model transformation with scaling and
interval integer arithmetic. The VM provides optimized core
functions to compute ANN and decision tree models. The
ML model is provided by text code with embedded data. In
the future, initial and update training should be provided by
the VM layer, too, although training algorithms can be
directly implemented on programming level. ML models are
provided as program code in text format with directly
embedded initialized in-place data (model parameters),
which can be modified at run-time. The stack VM is highly
customizable and extensible (ISA, code, data, stack sizes),
the integrated text-to-bytecode compiler is sufficiently fast.
An optional bytecode-to-text decompiler enables mobile
code and mobile ML models. Parts of the VM program code
are created by parametrizable code generators supporting the
domain- and application-specific optimization of the VM.
The ISA can be extended by the IOS, providing
programming level access to host application functions and
data, e.g., for accessing ADC and DAC devices.

REFERENCES
[1] S. Guo, Q. Zhou, Machine Learning on Commodity Tiny Devices,

Taylor & Francis, 2023
[2] X. Wang, M. Magno, L. Cavigelli, and L. Benini,

arXiv:1911.03314v3, 2022
[3] P. P. Ray, A review on TinyML: State-of-the-art and prospects,

Journal of King Saud University-Computer and Information Sciences,
2021

[4] R. Banner, I. Hubara, E. Hoffer, D. Soudry, Scalable Methods for 8-
bit Training of Neural Networks, arXiv:1805.11046, 2018

[5] N. N. Alajlan, D. M. Ibrahim, TinyML: Enabling of Inference Deep
Learning Models on Ultra-Low-Power IoT Edge Devices for AI
Applications, micromechanics, vol. 13, no. 851, 2022.

[6] Jain, S. Giraldo, J. D. Roose, B. B. Linyan Mei, M. Verhelst,
TinyVers: A Tiny Versatile System-on-chip with State-Retentive
eMRAM for ML Inference at the Extreme Edge, arXiv, 2023

[7] M. Bauer, IoT Virtualization with ML-based Information Extraction,
in IEEE 7th World Forum on Internet of Things 2021, 2021

[8] J. R. Hayes, M. E. Fraeman, R. L. Williams, T. Zaremba, An
architecture for the direct execution of the Forth programming
language, (1987) ACM SIGARCH Computer Architecture News,
15(5), 42-49

[9] G. Heiser, The role of virtualization in embedded systems, In
Proceedings of the 1st workshop on Isolation and integration in
embedded systems (pp. 11-16), 2008

[10] B. Jenkins, http://burtleburtle.net/bob/hash/index.html, accessed
24.1.2023

[11] Y. Lu, B. Prabhakar,Perfect hashing for network applications,
DOI:10.1109/ISIT.2006.261567, IEEE Explore, 2006

[12] A. Ghaffari, M. S. Tahaei, M. Tayaranian, M. Asgharian, Vahid, P.
Nia, Is Integer Arithmetic Enough for Deep Learning Training?,
Advances in Neural Information Processing Systems 35 (2022):
27402-27413

[13] S. Bosse, C. Polle, Eng. Proc. 2021, 10(1), 78;
https://doi.org/10.3390/ecsa-8-11283

[14] S. Bosse, S. Bornemann, B. Lüssum, Virtualization of Tiny
Embedded Systems with a robust real-time capable and extensible
Stack Virtual Machine REXAVM supporting Material-integrated
Intelligent Systems and Tiny Machine Learning , 2023, ,
https://doi.org/10.48550/arXiv.2302.09002

https://doi.org/10.3390/ecsa-8-11283

	I. Introduction
	II. Virtual Machine Architecture
	A. Compiler
	B. Bytecode Interpreter and Multitasking

	II. Tiny Machine Learning and Digital Signal Processing
	A. Signal Interface
	B. Digital Signal Processing
	C. Artificial Neural Network (ANN)
	D. Vector Operations
	E. Decision Trees

	III. Use-Case: Material-integreated Structural Health Monitoring
	IV. Evaluation
	V. Conclusions and Outlook
	References

