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Abstract— Tiny Machine Learning is a new approach that 

is being used for data-driven prediction classification and 
regression on microcontrollers using local sensor data. The 
models are typically learned off-line and sent to the 
microcontroller for use as binary objects or frozen and 
converted static data. This approach is not universal or 
flexible. The REXA VM, which can virtualize embedded 
systems and sensor nodes and includes a general machine 
learning framework that supports arbitrary dynamic artificial 
neural network and decision tree models, is introduced in this 
study. The models are delivered as text files with highly 
compressed program code that are enclosed in code frames 
with embedded data (model parameters). The VM offers 
fundamental computations for ANN and DT models 
(Microservices). Using a decompiler, models can be updated 
(retrained) and sent to other nodes (mobile models). It can be 
demonstrated that virtualization using a bytecode machine and 
just-in-time compiler is still appropriate and effective for 
extremely low-resource processors. 

Keywords— Virtualization, Virtual Machines, Tiny ML, 
Sensor Networks, Embedded Systems, Microservices 

I. INTRODUCTION 
Advanced and reliable data processing architectures are 

needed to handle a large rise in device density and sensor 
deployment towards smart and self-*; sensors, addressing 
ubiquitous computing, edge computing, and distributed 
sensor networks. Tiny Machine Learning (ML) is an 
emerging and challenging field [1]. ML models are 
commonly computed using high precision floating point 
arithmetic. Tiny embedded systems provide only integer 
arithmetic (8-32 bits), requiring either model transformation 
and freezing [2] or direct training using integer arithmetic 
[3], ideally on the target device itself [4]. Ultra low-power 
devices introduce additional constraints on the computation 
of Deep learning (DL) models [5], and hardware designs 
gains attraction [6], which are addressed in this work, too. 

This paper introduces and analyzes a real-time capable 
and extensible application-specific stack Virtual Machine 
(REXA-VM) with some unique and special features that can 
be implemented in tiny embedded systems with a 
microcontroller and as little as 8 KB data RAM and 16 kB 
code ROM. Virtualization in combination with Machine 
Learning (ML) is a necessity for unified sensor and data 
processing in large-scale and heterogeneous networks [7]. 
One major feature is a scriptable Tiny ML interface and 
signal analysis numeric using 16 bits scaled arithmetic. In 
contrast to common integer-based ML models using 8 bit 
scaled arithmetic [3], this VM supports 16 and 32 bit 
operations natively, preventing common arithmetic overflow 
and underflow issues. The real-time capability of REXA VM 
is important to ensure operational and event-reaction stability 

during time-consuming ML computations. The VM consists 
of a bytecode compiler and interpreter. The input is always in 
text format using a simple stack programming language 
similar to Forth, suitable for hardware implementations in 
embedded systems [8]. Using an ASCII text code and data 
format is a key feature required for the deployment of the 
REXA VM in highly heterogeneous environments including 
different host platform byte orders. One of the benefits of a 
virtualization layer is the freedom of implementation 
technologies. Virtualization and their limitations in 
embedded systems are discussed extensively in [9]. 
Therefore, an alternative implementation of the REXA-VM 
in FPGAs (or ASICs) with an RTL architecture can be 
provided, too.  The novelties of this work are: 

1. A unified and customizable software and hardware 
architecture of the scriptable and real-time capable 
stack-based VM (HW/SW co-design at the architecture 
level), supporting Tiny ML for highly compact 
Artificial Neural Networks (ANN) and decision tree 
(DT) computations; 

2. Highly customizable machine Instruction Set 
Architecture (ISA) supporting 16 and 32 bit arithmetic; 

3. High-speed just-in-time text-to-bytecode compiler 
(always bound to VM, code is always exchanged in text 
format) and optional bytecode-to-text decompiler 
supporting mobile code (and mobile ML models); 

4. Data is embedded in code, not needing any heap and 
dynamic memory management except for code frames, 
e.g., embedding and storing an ANN and its parameter 
inside program code. 

 

Non-continuous energy supply, e.g., supplied to the 
sensor node from outside sources using RFID/NFC, is 
another challenge introducing hard power constraints and a 
suitable degree of real-time capable data processing under 
energy and time constrains. The real-time capability of the 
VM (not discussed in this paper) is a key feature for running 
computational intensive tasks without compromising IO 
event handling (i.e., the reactivity of the device). It is 
assumed that a REXA VM node is accessed remotely via 
wireless communication. Program text code can be directly 
send to the VM for compiling and processing.  

The following sections introduce the relevant features and 
architectures of the REXA VM, with a focus on ML. An 
extended use-case demonstrates finally the suitability of the 
presented virtualization and programming interface for on-
device damage prediction. An extended pre-print version can 
be found in [14]. 
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Fig. 1. Basic REXA-VM architecture with integrated JIT compiler, stacks, and bytecode processor  

II. VIRTUAL MACHINE ARCHITECTURE 
The REXA VM is a highly configurable high-level stack 

processor that executes bytecode generated from textual 
program code, ensuring high portability, flexibility, and 
robust code processing in heterogeneous environments 
(including the deployment of different versions of the REXA 
VM). Basically, the entire ISA can be customized, creating a 
balance between generality and application-specific 
optimizations. Most instructions are zero operand operations 
accessing data entirely on the VM stacks (in the program 
code model, they are post-fix instructions because data was 
stored by previous operations). 

The following Fig. 1 shows the principle architecture of 
the REXA VM and its just-in-time (JIT) compiler. The 
architecture details depend on the configuration (single- or 
multi-tasking, number of stacks, and customized extensions 
and accelerators). The principle architecture is equal for 
software and hardware implementations. The native compiler 
is available in software and in hardware, but can be replaced 
by a lightweight pure Forth-based implementation. Profiling 
is an optional feature used for predictive real-time 
scheduling, as well as the energy-aware real-time scheduler. 

The code segment (CS) is the central storage for source 
code, bytecode, and embedded data. The CS is partitioned 
into dynamically sized code frames, commonly assigned to a 
task (depending on the scheduling model). The scheduler 
controls and monitors the bytecode loop (vmloop). Code 
operations can suspend task execution by waiting for events, 
handled by an event table. The Input-Output System (IOS, 
similar to the widely used Foreign Function Interface, 
extends the code and data space of the VM). The VM 
architecture is optimized for resource sharing, e.g., using an 
ADC sample buffer for computations from VM 
programming level, too. 

The main user program memory is the code segment of 
the VM is the code segment, (CS). A code segment is 
organized in byte cells and has a static fixed size. The new 

program code allocates a part of the CS, called a code frame 
(CF). A code frame can contain top-level operations, word 
definitions that can be added to the VM dictionary, and data 
variable allocations embedded in the code frame (there is no 
heap memory), either directly between Forth instructions or 
at the end of the code frame program (e.g., non-initialized 
array data). After the code frame program processing 
terminates (called the end operation), the code frame with all 
of its data is removed. Alternatively, the code frame can be 
kept alive after termination, and exported code word 
references can be used from later code frames. This feature 
enables incremental and partitioned program execution.  

In single-tasking mode, the code segment is commonly 
incremental and persistent. That means, program code is 
added to the CS incrementally. Each new code fragment is 
compiled and immediately executed. The current program 
terminates with the end instruction, with or without 
persistence. Without persistence, the code is removed after 
termination. If the code fragment is persistent, a new code 
fragment is stored at the end of the previous one. Persistent 
code cannot be removed, only resetting the CS is possible. 
Only the current code fragment can be scheduled, without 
branching to other code regions. In multi-tasking mode, the 
code segment is partitioned into dynamically sized code 
frames. Code frames can be removed later, and code frames 
can be linked. Scheduling can branch to other code frames. 
Each code frame is associated with a task, except code 
frames that terminated with persistence. 

A code frame merges code and data. The data (scalar and 
array variables) can only be accessed by code inside the code 
frame. Operations can be bound to named words, which can 
be exported in the global dictionary and accessed from other 
code frames (and tasks). If a function word is exported, the 
code frame is locked and is not removed if the code 
processing reaches the end (instruction). 

Temporary (short lifetime) data is stored and manipulated 
directly on fixed-size stack memories: 



1. The Data Stack (DS) holds most of the processing data 
and instruction operands; 

2. The Return Stack (RS) for function calls (not accessible 
from the programming level for security reasons); 

3. Optional a loop stack (FS) used for loop counters and 
secondary user data (can be merged with RS for 
memory efficiency). 

 

All non-temporary data is either embedded in code 
frames or provided by the host application via the Input-
Output System layer (IOS) API. 

The stack cell width is always 16 bits (single word 
width). The REXA VM supports double word operations, too 
(as a configurable option). Double words are composed of 
two single data words (word order depends on the native byte 
order of the underlying processor). Double words can be 
directly read and written from and to stacks by the VM 
(single memory access). The access time of multiplexed 
single and double word access to the stacks in software by 
memory pointer casting is commonly identical (assuming 32-
bit microprocessors). The hardware implementation can split 
the double word access into two memory cycles or use 32-bit 
memory for stacks, always providing one-cycle memory 
access. For performance reasons, the hardware 
implementation can implement stacks with block RAM 
components and single registers holding the first top values, 
enabling parallel computations on stack elements. The push 
and pop operations involved in most of the VM instruction 
code words modify stack pointers (dstop, rstop, fstop). For 
security reasons, the return stack (which holds code pointers 
on function calls) should not be accessed directly by program 
code. 

Besides hardcore stacks implemented inside the VM, 
softcore stacks can be implemented on the programming 
level in data arrays (embedded in code frames). Push and pop 
operations are provided by the core instruction word set. 

A. Compiler 
The compiler translates the source code text into 

bytecode instructions. It is a just-in-time (JIT) compiler that 
can compile code incrementally and on demand. Since the 
ISA of stack processors consists mostly of zero-operand 
instructions, it supports fine-grained compilation at the token 
level. The source text can be directly stored in the code 
segment referenced by a code frame (or any other data 
buffer, alternatively). Most instruction words can be directly 
mapped to a consecutively numbered operation code. 
Therefore, the compiler translates the source code into 
bytecode directly in-place, i.e., by replacing the text with 
bytecode, saving additional target memory buffers. An 
instruction word consists of at least one character, and thus 
can always be replaced by the op-code (one byte). Although 
a literal value can consist of only one digit and the data of a 
single word value occupies two bytes, there is always a space 
or newline character after a literal value, providing the 
required data space. Extension of the current code frame at 
the end is always possible (as long as there is free space in 
the CS). One exception is a double word literal value 
requiring at least two characters and the suffix "l", followed 
by an obligatory separator character and the space, providing 
four bytes of data space in total. 

Data is either stored on the stacks during run-time or is 
embedded in the code frame during translation. Scalar 
variables and initialized arrays can always be embedded in-

place. Non-initialized arrays are appended at the end of the 
compiled code frame. 

The compiler is part of the VM and is processed directly 
on the (low-resource) embedded system or in hardware. This 
ensures security checks and guarantees that a task assigned to 
a code frame can only access its private data. Finally, the 
textual interface ensures compatibility and interoperability 
among different VM versions (with different binary ISA, but 
a common sub-set). Alternatively, most parts of the compiler 
can be implemented in the high-level VM language itself. In 
this case, the VM only provides basic compiler operations 
like a tokenizer and a dictionary.  

 
Fig. 2. The hierarchical compiler LUT architecture used for fast text-to-
bytecode translation. After tokenization of the input text, direct op-code 
encoding and updates of tables are performed.  

To enable fast compilation (with respect to low-resource 
microcontrollers), no traditional lexer and parser are used. 
Instead, the parsing process uses two different approaches: 

1. A perfect hash table [10,11] (PHT) for core words 
(more than 100 core words) with a constant search time. 
Because the hash index is directly linked to the 
operational code, the hash table itself must be saved. A 
hash function, on the other hand, cannot detect words 
that do not match any of the core word set. Therefore, a 
string table is required containing all core words 
indexed by the same hash index, finally comparing a 
hash-predicted word from this table with the current 
word to be parsed. 

2. A Linear Search Table (LST) with non-constant search 
time. The LST implements an iterative and sequential 
character search in a compacted linear array, as 
discussed below. The LST needs more (ROM) space 
but, on average, less machine instructions (basic 
operations) for search than the PHT.  

 

There are additional dictionaries, e.g., the global 
instruction word dictionary. Dictionary words and local data 
variables are handled with simple hashing and small look-up 
tables (LUT) storing collisions by linear search. The 
hierarchical look-up table architecture for fast text-to-
bytecode translation is shown in Fig. 2. The REXA VM 
bytecode consists of operational code and data. Most 
instructions are zero-operand post-fix operations, simplifying 
the bytecode format significantly (and the code decoder, 
especially addressing hardware implementations). Literals 
are divided into signed short and double words (data widths 



of 14 and 30 bits, respectively). A bytecode code frame can 
be decompiled to text again, supporting mobile code. 
Embedded initialized data, e.g., parameter arrays of an ANN, 
can be modified at run-time (update training), and the 
modified values are contained in the text code that can be 
send to another device. 

B. Bytecode Interpreter and Multitasking 
The VM architecture and code processing can be either 

single-tasked or multi-tasked (using the code frame mode). 
Although the VM can be replicated and share the same code 
segment and global objects, providing multi-threading (real 
multi-tasking) with parallel execution on multi-core 
processors or replicated RTL hardware, multi-tasking is a 
scheduling without concurrency, i.e., tasks are co-routines. 
The priority can be changed by the scheduler only if there are 
energy conflicts. There are event-based and computation-
based tasks. Both differ in their run-time behaviour. Negative 
priorities indicate a short-running event-based IO task; 
positive priorities indicate a greedy computational task. 
Besides multi-tasking, which provides a scheduled 
programming and code execution model without parallelism, 
multiple VM instances can be easily composed into a parallel 
VM. Each parallel VM shares the same code interpreter 
(decoder) and code segment (and compiler, if implemented), 
but with individual stack segments and VM registers. The 
bytecode interpreter is basically the instruction decoder with 
a large conditional branch construct (case selector statement) 
mapping an operational code onto operational code 
statements, mostly consisting of stack manipulations. Due to 
the consecutive numbering of operational codes in the range 
{0,1,..,opcodemax-1}, a direct branch table can be used, 
providing an instruction decoder with a constant run-time, 
which is important for real-time scheduling. Commonly, C 
compilers detect this feature and create a branch (look-up) 
table implicitly. The instruction decoder and execution unit 
are automatically created from the perfect hash table with a 
switch-case construct. The operational statements are macro 
definitions provided by the programmer in a separate header 
file. Computed goto statements can be created, alternatively. 
But not all compilers, especially commercial versions 
tailored for embedded systems, support computed go-to 
statements (basically only supported by GNU compilers). 
The VM bytecode interpreter is fully binary compatible 
among different software versions as long as the same word 
set is used. Any changes to the core word set (number of ops 
or names) invalidate binary compatibility, which is the 
reason for bundling the VM execution with the compiler. 

II. TINY MACHINE LEARNING AND DIGITAL SIGNAL 
PROCESSING 

Data-driven modelling is used in a wide range of 
classification and regression applications. Often, data-driven 
trained models (predictor functions) are fully trained before 
being used (application). Commonly, the model parameters 
as well as the variables are represented by floating-point data 
types and processed by floating-point hardware arithmetic, 
which is not available on low-resource microcontrollers. 
Basically, it is possible to use fixed-point arithmetic (e.g., 
with 16 bit encoded values), at least for classification tasks. 
Distributed machine learning is a specific class of ensemble 
learning based on the divide-and-conquer principle. Each 
node provides a local state estimation or classification based 
solely on local data, which is then globally fusioned to a 
global state. Assuming such an architecture, predictive 
classification (and possibly regression) is appealing for 
implementation on the sensor node level and directly 

processed by the microcontroller or FPGA processing unit, a 
concept known as "tiny machine learning." One prominent 
sub-class of predictive data-driven models are Artificial 
Neural Networks (ANN), which are basically non-linear 
function graphs. 

An ANN can be organized in layers, and each layer 
consists of a given number of functional nodes (neurons). 
Each functional node performs a data fusion by summing the 
products of all input variables x (vector) with a weight 
parameter vector w. Finally, the resulting scalar value t is 
passed to a commonly non-linear transfer function g(t), 
which provides the node's output. For the computation of one 
node, vector operations are required. 

To compute (apply) an ANN, only some specific vector 
arithmetic operations and a unified vector and matrix data 
structure are required. A challenge is the reduction in value 
of resolution and precision. ANNs are typically trained using 
floating-point arithmetic (at least with a single 32-bit 
precision).The VM addressed in this work supports only 16- 
and 32-bit integer arithmetic. The transformation of already 
trained networks into integer interval arithmetic requires 
additional scaling vectors and scaling operations. Each ANN 
can be functionally decomposed into vector operations. All 
functions fi (representing one layer) and the output function g 
use matrix and vector operations, which can be implemented 
in software as well as hardware and computed directly with 
integer arithmetic. Only the activation (transfer) functions 
(e.g., sigmoid or soft-max) require approximated fixed-point 
(integer) implementations of the real-valued functions, 
typically using a combination of piecewise multi-point 
regression and look-up tables. Not fully connected ANNs are 
computed in the same way as fully connected ANNs, but 
they produce sparse vectors and matrices, resulting in a large 
number of null (useless) operations. 

The vector operations in REXA VM's hardware 
architecture can be parallelized, balancing resource 
occupation and speed. The ARM Cortex M0-M3 processors 
do not provide parallel vector operations (such DSP 
operations were added first in generation 4).  

The Input-Output System (IOS) implemented in the 
REXA VM is similar to the widely used Foreign Function 
Interface (FFI) that provides unified host application 
integration and extends the instruction word set with bridged 
native C/C++ functions (or hardware extensions). 
Additionally, host application variables (scalar and numerical 
array types) can be directly accessed from VM programs. 
Most of the DSP and ML operations are not core part of the 
core REXA-VM engine. Instead, they are added on demand 
by the host application from customizable libraries. 

A. Signal Interface 
A sensor node processes sensor data, which is commonly 

sampled by the node itself using analog-digital conversion 
(ADC). Active measuring techniques necessitate the 
generation of a stimulus, which is typically controlled by the 
sensor node (e.g., a digital-to-analog converter (DAC)).VM 
programs can access the signal acquisition layer by using a 
signal device interface provided by the sensor node host 
application via the IOS. Sampled sensor data is stored in a 
dedicated buffer, commonly filled automatically during the 
sampling phase via direct memory access (DMA). The 
sample buffer can be directly accessed by the VM or at 
program level. DMA sampling with triggering, e.g., on a 
specific threshold level, typically utilizes a ring buffer 
memory architecture. Reading the sample buffer must also be 



done cyclically in this case, beginning at a specific top buffer 
position. Due to hard resource constraints, the sample buffer 
is also used for digital signal processing, e.g., applying filters 
to the data in-place. 
const FREE 10 const SINGLE 4 const HIGH 1 
FREE 1 HIGH 100 0 adc ( Start ADC )  
1000 1 sampled await ( Suspend task )  
<0 if error endif 
var peak 0 peak ! 
var offset sample0 read ! 
var pos 
1024 0 do  ( Iterate over sample buffer ) 
  offset @ samples read 
  dup peak @ > if peak ! i pos ! else drop endif 
  offset @ 1 + 1024 mod offset ! 
loop 
." Peak: " peak @ ." at " pos @ . cr  
Ex. 1. Synchronous AD conversion with post processing  

 

B. Digital Signal Processing 
The set of DSP operations is provided via the FIOS layer 

API and can be extended by the host application. Only fixed-
point integer arithmetic is supported. The input and output 
scaling of arithmetic and numerical functions is fixed. Basic 
operations required for typical signal processing and analysis 
tasks are provided, like scalable trigonometric functions, hull 
and filter functions. 

Trigonometric functions and functions composed of 
trigonometric functions are implemented with segmented 
linear and non-linear look-up tables. For example, the error 
of the discrete sigmoid function is always less than 1%, while 
only requiring 30 bytes of LUT space and less than 10 unit 
operations, as shown in Alg. 1. These software functions can 
be immediately implemented in hardware, too. The LUTs are 
computed with Alg. 2. 
static ub1 sglut13[] = { <24 values> }; 
static ub1 sglut310[] = { <6 elements> }; 
// y scale 1:1000 [0,1], x scale 1:1000 
sb2 fpsigmoid(sb2 x) { 
  sb2 y; 
  ub1 mirror=x<0?1:0; 
  if (mirror) x=-x; 
  if (x>=10000) return mirror?0:1000; 
  if (x<=1000) { 
    y = 500+(((x*231)/1000)); 
    return mirror?1000-y:y; 
  } else if (x<3000) { 
    ub2 i10 = ((fplog10((x/5)|0)/2))-65; 
    y = ((sb2)sglut13[i10])+731; 
    return mirror?1000-y:y; 
  } else { 
    ub2 i10 = ((fplog10((x/10)|0)/10))-14; 
    y = ((sb2)sglut310[i10])+952; 
    return mirror?1000-y:y; 
  } 
  return 0; 
} 
static ub1 log10lut[] = { <100 values> } 
// x-scale is 1:10 and log10-scale is 1:100 
sb2 fplog10(sb2 x) { 
  sb2 shift=0; 
  while (x>=100) { shift++; x/=10; }; 
  return shift*100+(sb2)log10lut[x-10]; 
} 

Alg. 1. Range-segmented and LUT-based implementation of the sigmoid 
function with less than 1% approximation error (using approximated LUT-
based log10 function)  

The LUT tables can be computed as follows: 

 10 10log lut log 100 : ,0 99
10
iint i i

   = ∈ ≤ ≤   
   

  (1) 

The fpsigmoid function LUTs are computed iteratively using 
the fplog10 function, described by the following pseudo 
code algorithm Alg. 2 (accuracy is plotted in Fig. 3): 

sglut13 := [] 
for x=1 to 2.95 step 0.05 do 
  i10 := int(fplog10(int(x*1000/5))/2)-65 
  if sglut13[i10] = undefined then 
    sglut13[i10] := int(sigmoid(x)*1000)-731 
  endif 
done 
sglut310 := [] 
for x=3 to 9.9 step 0.1 do 
  i10 := int(fplog10(int(x*1000/10))/10)-14 
  if sglut310[i10] = undefined then 
    sglut310[i10] := int(sigmoid(x)*1000)-952 
  endif 
done 

Alg. 2. Computation of the LUTs for the fixed-point sigmoid function  

 

 
Fig. 3. Accuracy of fixed-point approximations for log10 and sigmoid 
functions  



C. Artificial Neural Network (ANN) 

An ANN consists of two parts: 

1. The data, i.e., for parameter, input, and output variables; 
2. The structure and functions processing the data. 

 

For the sake of simplicity, fully connected networks are 
assumed, but any irregular network structure is a sub-set of a 
fully connected structure and can be used with the following 
operational architectures, too. In contrast to common ANN 
software frameworks, the REXA VM provides only core 
vector operations. The parameter data is embedded in a code 
frame by using the initialized array constructor. Both 
parameter and input/output data can be stored in the program 
code frame, shown in the next section.  

D. Vector Operations 
The core set of vector operations provided by the REXA 

VM supporting integer arithmetic ANN computations can be 
summarized to:  

1. Element-wise vector operations (e.g., vecmul: op1vec 
op2vec dstvec scalevec); 

2. Dot-product operation performing a sum of product data 
fusion (vecprod: veca vecb scale → number ); 

3. A folding operation for node layer computations 
(vecfold: invec wgtvec outvec scalevec)  

4. A mapping operation applying a function elementwise 
(vecmap: srcvec dstvec func scalvec) 

5. And a generic scaling operations (vecscale: srcvec 
dstvec scalevec ). 

 

Vector operations are scaled using supplied scaling 
vectors (scalevec). Vector operations always operate on 
single data words (16 bit), but internally 32 bit arithmetic is 
used to avoid overflows. To scale to signed 16 bit integer, 
some of the operations use a scale factor or scale factor 
vector (negative scale values reduce, positive expand the 
values by the scale factor) to avoid overflows or underflows 
in following computations, similar to scaled tensors in [4,12]. 
There are vector loading, scaling, combination, and mapping 
functions, which provide basic vector ANN functions 
operating on embedded or external array data. 

The operations are defined by the following formulas: 
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E. Decision Trees 
Decision trees, as lightweight predictor models well 

suited for tiny embedded systems, can be efficiently stored in 

Linear Search Tables (LST), as introduced earlier for 
compiler parsing. 

Decision trees consist of nodes associated with input 
variables xj or output variables yk (and specific outcomes of a 
prediction). Directed edges connecting nodes are functional 
evaluations of a node variable.  

 

┌───┬────┬─────┬──────┬─────┬────┬───┐    
│ x │ op │ len │ val1 │ bra │ .. │ x │... 
└───┴────┴─────┴──────┴──┬──┴────┴───┘    
      <                  │         ▲      
      >                  │         │      
      =                  └─────────┘      
      ~                                   
                                          
  ────┬─────┬──────┬─────┬───┬─────┐      
.. op │ len │ val1 │ bra │ y │ val │ ..   
  ────┴─────┴──────┴─────┴───┴─────┘      
Def. 1. Format of a Linear Search Tree (LST) implementing a decision tree  

There are three basic operations: Binary relation (</>), 
equality (=), and nearest value approximation (≈). The data 
format is shown in Def. 1. Each slide starts with the input 
variable to be evaluated (or target for output), the operation 
applied to choices, a field specifying the number of choices, 
and value-branch pairs. 

III. USE-CASE: MATERIAL-INTEGREATED STRUCTURAL 
HEALTH MONITORING 

The following complete example Ex. 2 code shows how 
simple it can be to implement ANNs in REXA Forth, by 
implementing a three layer network with [14, 8, 2]  neurons 
(based on [13]). The 14 input features are computed using a 
signal hull analysis (maximum height, width, and time 
position) of sensor data from multi-path GUW 
measurements. The signal hull computation was originally 
performed by a Hilbert transformation, later replaced by a 
rectifying function and a first order recurrent low-pass filter. 
The network parameters (lines 3-27) are embedded in the 
code and are used by the network forward activation function 
forward (lines 31-47). The computations are performed by 
using the pre-defined universal vector operations, introduced 
in the previous section. The vector operations determine the 
size parameters of the vectors (or matrix) automatically. 
Impressive performance results are presented in Sec. V. The 
ANN feature vector is computed at run-time by multi-path 
GUW signal sampling (6 transducers) and simple signal 
analysis (lines 49-57). In line 50 the pitch signal waveform 
generator applied to one transducer is started (DAC), and in 
lines 51 the ADC measurement is started (triggered by the 
DAC generator). The await suspends the task execution until 
the ADC conversion is done. The results of the signal 
analysis (hull computation using rectification and applying a 
low-pass filter) are stored in the ANN input feature vector 
(input). The compiled program code requires about 800 bytes 
only. 
 1 ( Signed 16 bit integer type arrays ) 
 2 ( Input Layer ) 
 3 array input  14 
 4 array biasI { 1 2 .. 14 } 
 5 array wghtI { 1 2 .. 14 } 
 6 array scaleI { 1 2 .. 14 } 
 7 array activI 14 
 8 
 9 ( Hidden Layer ) 
10 array wghtH1 {  
11  1 2 .. 14 ( Neuron 1 ) 



12  1 2 .. 14 ( Neuron 2 ) 
13  ... 
14  1 2 .. 14 ( Neuron 8 ) 
15 } 
16 array biasH1 { 1 2 .. 8 } 
17 array scaleH1 { 1 2 .. 8 } 
18 array activH1 8 
19 
20 ( Output Layer ) 
21 array wghtO { 
22   1 2 .. 8 
23   1 2 .. 8 
24 } 
25 array biasO { 1 2 } 
26 array scaleO { 1 2 } 
27 array output 2 
28 
29 
30 ( Forward activiation of network ) 
31 : forward  
32   ( Evaluate input layer --   ) 
33   input wghtI actI scaleI vecmul 
34   ( Add bias ) 
35   actI biasI actI 0 vecadd  
36   ( Apply activation function w/o scaling ) 
37   actI acI $ sigmoid 0 vecmap 
38   ( Compute hidden layer activations ) 
39   actI wghtH1 activH1 scaleH1 vecfold 
40   activH1 biasH1 activH1 0 vecadd 
41   ( Apply activation function w/o scaling ) 
42   activH1 activH1 $ sigmoid 0 vecmap 
43   ( Compute output layer activations ) 
44   activH1 wghtO output scaleO vecfold 
45   output bias output 0 vecadd 
46   output output $ sigmoid 0 vecmap 
47 ; 
48 ( Start path measurements and feature extr. ) 
49 6 0 do 
50   CHIRP 10 2 1000 i dac ( Start DAC )   
51   EXTTRIG 1 HIGHGAIN 1000 i adc ( Start ADC )  
52   1000 1 sampled await ( Suspend task ) 
53   sample 0 1024 vecabs 
54   sample 0 1024 10 lowp 
55   sample 0 1024 vecmax ( -- index val ) 
56   input i 2 * cell+ ! 
57   input i 2 * 1 + cell+ !   
58 loop 
59 forward 
60 output vecprint cr 
61 ( Done ) 

Ex. 2. The example ANN consists of 14 input variables and neurons, one 
hidden layer of 8 neurons, and two output neurons. The ANN is 
implemented entirely in one code frame (about 400 bytes). The model 
parameter values are only for illustration.  

The initialized vectors are stored in-place in the code 
frame, the non-initialized vectors are stored at the end of the 
code frame (extending the code frame by the compiler). If 
there is an additional update training function adapting 
weight and bias parameters, the code frame containing the 
ANN can be decompiled to text and send back to the source 
or any other device for application.  

IV. EVALUATION 
The main advantage of the proposed VM architecture is 

the capability to create the main and crucial parts of the VM 
using code generators and adapt the VM architecture to 
specific applications and host architectures. All data (and 
code) memory is allocated statically at compile time. There is 
no dynamic memory management requirement. The compiler 
works in-place, i.e., it compiles source text stored in free 
regions of the CS directly in-place into bytecode (no 
additional storage space is required during compilation). 
Although the data, return, and loop stacks DS, RS, and FS, 
respectively, can be small, multi-threading and multi-tasking 
increase the stack storage requirements by the number of 
maximally supported threads and scheduled tasks. 

Using the widely deployed 32 bit STM32 ARM Cortex 
M0 microcontrollers, a typical REXA VM implementation 
with CS=1024, DS=256, RS=128, FS=64 cells, and 101 
Words, requires about 8 kB RAM and 8 kB ROM resources 
(not included IOS attached data and code). The Tiny ML 
code for ANNs requires additionally about 500 Bytes RAM 
and 1 kB ROM. The basic execution speed of the VM is 
about 14 KIPS / MHz clock frequency, i.e., 70 clock cycles 
and ARM machine code instructions are required for the 
execution of one VM bytecode instruction. The average 
forward computation time for an ANN with 24 neurons (see 
use-case) requires about 16 ms / MHz. The compiler can 
compile about 2000 IPS / MHZ. The complete code example 
from the use-case section consists of about 500 words 
requiring about 250 ms / MHz compile time. 

The hardware resources required for typical REXA VM 
configurations (CS=4096, DS=1024, SS/RS=32, Words=84) 
for a SRAM-based FPGA XC3S500e is about 2000/4500 
digital logic slices with a block RAM occupation of 9/20, 
showing the suitability of the REXA VM architecture for 
hardware implementations, too. 

The DSP/ANN module of the REXA VM was tested with 
different ANN configurations, with 3-5 layers, and 2-64 
neurons per layer. The measured results for the ARM Cortex 
M0, STM32 L031 and F103 microcontrollers are shown in 
Fig. 4 and Tab. 1 (larger networks can only be handled by the 
F103 due to RAM allocation).  

 

Layers  Neurons  Code [Bytes]  Forward Time [ms/MHz]  

[2,3,1]  6  237  7.7  

[4,3,2]  9  281  8.2  

[4,6,2]  12  336  9.1  

[4,8,2]  14  372  11.2  

[4,8,4]  16  416  10.5  

[4,8,8,2]  22  601  14.4  

[4,8,8,4]  24  645  16.6  

[4,8,8,8,4]  32  874  21.0  

[4,32,2]  38  804  17.1  

[8,32,32,8]  80  3813  43.5  

[8,64,32,8]  112  6566  58.3  

TAB. 1. NORMALIZED ANN RESULTS ON STM32 PLATFORM DEPENDING ON 
THE NETWORK CONFIGUARTION (NODES PER LAYER) 

 

 
Fig. 4. ANN forward computation times for one neuron and per MHZ clock 
frequency (different ANN architectures with 3-5 layers and 2-64 neurons 
per layer)  



 

The code size includes the ANN parameter data, input 
and output vectors, and the forward computation function. 
The code size ranges from 200 to 6K bytes for 6-100 
neurons. As shown in Fig. 4, the computation time for one 
neuron decreases with increasing network size. This is a 
result of the VM execution overhead that dominates for very 
small network sizes. The average computation time is about 
700 μs / neuron / MHz for the ARM Cortex STM32 
microcontrollers. Note that the ARM processors 
underperform compared with modern Intel x86/x64 
processors (but still have an efficiency ratio of 1:100 if power 
and chip area are considered). Typical computation times for 
medium sized networks are in the millisecond range, fully 
suitable for on-node classification. 
 

V. CONCLUSIONS AND OUTLOOK 
This work presented a virtualization layer (VM) for tiny 

embedded systems with very low resources, addressing the 
processing of ML models on-device in particular. Currently, 
only already trained ML models can be processed on the 
device and require a model transformation with scaling and 
interval integer arithmetic. The VM provides optimized core 
functions to compute ANN and decision tree models. The 
ML model is provided by text code with embedded data. In 
the future, initial and update training should be provided by 
the VM layer, too, although training algorithms can be 
directly implemented on programming level. ML models are 
provided as program code in text format with directly 
embedded initialized in-place data (model parameters), 
which can be modified at run-time. The stack VM is highly 
customizable and extensible (ISA, code, data, stack sizes), 
the integrated text-to-bytecode compiler is sufficiently fast. 
An optional bytecode-to-text decompiler enables mobile 
code and mobile ML models. Parts of the VM program code 
are created by parametrizable code generators supporting the 
domain- and application-specific optimization of the VM. 
The ISA can be extended by the IOS, providing 
programming level access to host application functions and 
data, e.g., for accessing ADC and DAC devices. 
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