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INTRODUCTION 

 Spatially resolved Inspection and Testing of structures requires image-based measuring methods  
 Non-destructive testing (NDT) of metal-based structures can exploit different imaging methods, 

mainly: 
 X-ray Radiography (single projection) and Computer Tomography (CT, multi-projection)  

 Guided Ultrasonic Waves (GUW) and Ultrasonic Sonography 

 Homogeneous as well as Composite Materials can be tested, but reflection and diffraction can have a 
significant impact on image quality! 

 Detection of hidden damages, defects, and impurities (e.g., pores) is still a challenge! 

STEFAN BOSSE - DETECTION OF HIDDEN DAMAGES IN FIBRE LAMINATES USING LOW-QUALITY TRANSMISSION X-RAY IMAGING, X-
RAY DATA AUGMENTATION BY SIMULATION, AND MACHINE LEARNING 4 

Primary Goal. Automated Damage, Defect, and Impurity Detection in materials and 
structures including composites using single X-ray projection images (from LowQ/MidQ 
devices) and data-driven feature marking models (Convolutional Neural Networks). 
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Different specimens, structure geometries, materials, and defects are considered in this 
work! They pose different coincidence between material and image features. 

1. Homogeneous aluminum die casting plates (150x40 mm) with gas pore defects  

2. Composite Fibre Metal Laminate plates (FML, aluminum and PREG layers, 50 x 50 mm) with 
impact damages posing layer delaminations, deformation, cracks, and kissing bond defects. 

Secondary Goal. Migration from laboratory (HighQ/MidQ) to in-field (LowQ) measuring 
techniques and devices. 



INTRODUCTION 

STEFAN BOSSE DETECTION OF HIDDEN DAMAGES IN FIBRE LAMINATES USING LOW-QUALITY TRANSMISSION X-RAY IMAGING, X-RAY 
DATA AUGMENTATION BY SIMULATION, AND MACHINE LEARNING 6 

 Feature detection and marking in measuring images can occur on different levels: 
 Region-of-Interest Search 
 Feature Maps 
 Damage and defect classification 
 Damage and defect localisation 
 Global statistical aggregates (e.g., pore density, distribution) 

 Either classical numerical and model-based algorithms (e.g., edge detection using a Soebel filter or Canny 
detectors) or data-driven models are used for feature marking („Machine Learning“) 

Data-driven models require data! Data must contain a sufficient statistical variance 
and distribution of features to be detected. That‘s the first issue with most 
engineering data! Additionally, supervised data modelling requires accurately labelled 
strong feature examples, commonly not available, and being the second issue and 
downfall in data-driven modelling. 
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GUW/US VERSA X-RAY RADIOGRAPHY/CT 

 X-ray images can be simulated with high accuracy with respect to real measured images1 

 X-ray images enable direct interpretation and feature* detection (e.g., damages), but, not all features 
are directly visible and need to be intensified (contrast/SNR by algorithms) 

 Ultrasonic signals cannot be simulated with high accuracy with respect to real measured images; there 
is a large reality gap! 

 Features* are hard to be detected directly, advanced filtering and complex feature extraction models are 
required. 
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* Feature Classes: Damages, Defects, Inhomogenities, Pores, Delamination, Cracks 
1 Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically realistic phantoms, Jamie Lea Pointon, Tianci Wen, Jenna Tugwell-Allsup, 
Aaron Sújar, Jean Michel Létang, and Franck Patrick Vidal Computer Methods and Programs in Biomedicine, 2023.…. 
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PRINCIPLE CONCEPT 
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DEVICE CLASSES 
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HighQ MidQ LowQ 

Single Projection 

Mult-Projection (Rotation) 

X-ray Tube Focal Diameter 5μm 0.8mm 0.8mm 

X-ray Voltage/Current -120 kV/2 mA -120 kV/10 mA -70 kV/1 mA 

Detector 
2000x2000 

20 μm 
Direct Sci./Imag. 

1000x1000 
200 μm 

Direct Sci. 

2000x1000 
3/40 μm 

Screen/Imaging 

Digital Resolution [Bits] 16 16 12 

Sampling Time 100 ms-5 s 10 ms-1 s 5 s 

Distance Object/Source 5-10 cm 10-50 cm 20 cm 

Costs 500 k€ (Zeiss) 100 k€ (IFAM) 1 k€ (Bosse) 



13 STEFAN BOSSE - EREIGNISBASIERTE VERTEILTE ZUSTANDSÜBERWACHUNG UND SCHADENSERKENNUNG IN GROßSKALIGEN UND 
KOMPLEXEN KONSTRUKTIONEN MIT HYBRIDER MULTISENSORFUSION 

DATA AND DATA SETS 

Models 

X-ray CT Radiography 

Simulation SP/MP Micrographs 
HighQ+Artificial 
Noise 

LowQ/MidQ MidQ/HighQ 

Reference 

SP: Single Projection 
MP: Multiple Projections 

ML 

Ground Truth 



KEY RESULTS AND CHALLENGES 
Specimens: 
1. Aluminum die casted plates with pores, Fraunhofer IFAM Bremen (Dirk Lehmhus) 
2. GLARE Fibre Metal Laminate plates (5 layers) with impact damages , DFG research group 3022 (Bremen, Hamburg, 

Braunschweig, Siegen) 
 
Objectives (Hypothesis: Can the goal be reached with the proposed method and data?) 
1. Pore detection (feature marking) from single frontal LowQ X-ray projections using a Convolutional Neural Network 
2. Damage or anomaly feature marking in 3D CT reconstructed  HighQ image volumes using a Convolutional Neural Network 
 
Measurements 
1. MidQ X-ray (IFAM), single and multi-projection images (CT, 400/800 projections) 60 kV, 2 mA, 1000 x 1000 pix. SSD, 200μm 

LowQ X-ray (Bosse), single projection images, 55 kV, 1mA, 1920 x 1080 pix, Imaging detector with CMOS sensor, 40 μm 
2. HighQ X-ray (Zeiss Xradia μCT) multi-projection images (CT, 800 projections), 110 kV, 1 mA, 2000 x 2000 pix. SSD, 20 μm  
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DATA VARIANCE: THE FIRST CHALLENGE 
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In this work a semantic pixel classifier is used for feature marking. From the model point of 
view, each pixel (and neighbour pixels) of an X-ray image is a sample instance!  



 Left: Volume projection of reconstructed CT images with data from a MidQ device (400/800 projections, rec. with classical fbp alg.) 

 Right: CNN Pixel Classifier Feature Marking image predicted from single projection image (MidQ), trained with real images [8-8]  
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 Left: Single projection  X-ray radiography images from a MidQ device (M=2, pixel size 200μm 1000x1000 pixels, cropped) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (MidQ), trained with real images  [8-4] 
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 Left: Single projection  X-ray radiography images from a MidQ device (M=2, pixel size 200μm 1000x1000 pixels, cropped) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (MidQ), trained with synthetic images  [8-8-4] 
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 Left: Single projection  X-ray radiography images from an Imaging LowQ device (M=1, eff. pixel size 40μm 1920x1080 pixels) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (LowQ), trained with synthetic images  [8-8-4] 
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 Left: Single projection  X-ray radiography images from an Imaging LowQ device // Extruded aluminum plates (d = 2 mm) 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image (LowQ), trained with synthetic images  [8-8-4] 
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 Left: Single projection  X-ray radiography images from XraySim (M=2, pixel size 150μm 1000x1000 pixels, cropped) // Synthetic Plate 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image [8-8-4] 
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 Left: Single projection  X-ray radiography images from XraySim (M=2, pixel size 150μm 1000x1000 pixels, cropped) // Synthetic Plate 

 Right: CNN Pixel Classifier Feature Marking predicted from single projection image [8-8-4] 
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PORE INSPECTION AND CHARACTERISATION BY CT 
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It is a challenge to estimate pore shapes 
(geometry, size), density, spatial 
distribution, and to distinguish 
reconstructed pores from image artifcats 
and noise! 

 Manual measuring of shape parameters of selected 
pores (e.g., using ImageJ analysis software) with 
ellipse approximation 

 Automated pore analysis by point clustering 
methods and ellipsoid approximation 
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ANOMALY DETECTION IN FML CT DATA (NEGATIVE TRAIN.) 
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 A LSTM Autoencoder is used as an anomaly detector. Shown is the feature marking  of the AE (top view of the X.ray CT volume) 

 Specimen: FML plate with impact damage. A.E: Different AE model configurations and trainings // Data from HighQ device 
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ANOMALY AND ROI DETECTION IN SINGLE PROJECTION 
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HighQ single projection image data from μCT measuring 
devices are not always better than image data from 
LowQ devices for ROI and anomaly detection! 
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ANOMALY DETECTION IN FML CT DATA (POSITIVE TRAIN.) 
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 A CNN  is used to detect anomalies in a CT volume (feature marking of damage candidates)  // Data from HighQ device 

 Specimen: FML plate with different damages: A: foil pseudo defect,, B: Resin washout B, C: Baseline, D: Layer delamination: 

1 Chirag Shah, Stefan Bosse, and Axel von Hehl. Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics, Materials 15 (MDPI), no. 13 (2022): 4645…. 



METHODS AND ALGORITHMS 

 3D CAD modelling using automated model code generators, Monte Carlo simulation, and openSCAD 

 X-ray simulation using own simulation software based on prooven and accurate gvxr/gVirtualXray library 

 3D CT reconstruction with Filtered Back Projection (using sine filters) 

 Convolutional Neural Networks in different flavors 

 Anomaly detectors applied to images and CT volume data 
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X-RAY SIMULATION 

 Input: Polygon mesh grid (STL, Stereolithography file format) model 
 An STL file describes a raw, unstructured triangulated surface 

 Decomposition of multi-material structures in single density parts (finally merged in simulator) 

 3D Model design: Constructive Solid Geometry (CSG) 

 Output: X-ray intensity image with a specific detector resolution (number of pixels) and pixel size, 
floating point or integer data format (at least 16 Bits) 

 Spatial source, object, and detector geometries can be fully parametrized including rotatated planes 

 Core software library: gvxr / gVirtualXray using GPU computations and the OpenGL Shading 
Language (faster than 1ms / image)  
 https://gvirtualxray.fpvidal.net/ 

 Based on the Beer-Lambert law to compute the absorption of light (i.e. photons) by 3D objects (here polygon 
meshes). 
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https://gvirtualxray.fpvidal.net/


X-RAY SIMULATION: CAD MODEL 
rotate ([90,90,90]) 

difference () { 

  rotate ([90,0,0]) cube([100,4,40],true); 

  union () { 

    translate([3.17,6.14,0.67])  

      rotate ([0,0,-1.43])  

      scale([1.15,1.12,0.31])  

      sphere(r=0.5,$fn=20); 

    translate([-16.66,-4.05,0.39])  

       rotate ([0,0,40.14])  

       scale([0.89,2.21,1.46])  

       sphere(r=0.5,$fn=20); 

… 

  } 

} 
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X-RAY SIMULATION 
 C++ simulation library gvxr/gVirtualXray1 

 Integrated in own simulator program XraySim: 
https://github.com/bslab/xraysim 

 GPU/OpenGL Ray tracing using Beer-Lambert law  

 Attentuation along direct transmission path from 
source to detector – no scattering and reflection 
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1 Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically realistic phantoms, Jamie Lea Pointon, Tianci Wen, Jenna Tugwell-Allsup, 
Aaron Sújar, Jean Michel Létang, and Franck Patrick Vidal Computer Methods and Programs in Biomedicine, 2023.…. 

“I(x,y) is the integrated energy in eV received by pixel (x,y). In 
the polychromatic case, the beam spectrum is discretised in 
several energy channels. Ei corresponds to the energy in eV of 
the i-th energy channel. D(Ei) is the number of photons emitted 
by the source at that energy Ei. The detector response R(Ei) 
mimics the use of a scintillator by replacing the incident energy 
Ei with a smaller value, i.e. R(Ei) < EI. μj(Ei) is the linear 
attenuation coefficient of the j-th material at energy Ei. dj(x,y) is 
the path length.” 

https://github.com/bslab/xraysim


WORKFLOW 
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SEMANTIC CNN PIXEL CLASSIFIER 

 Input: A sub-window of an X-ray image 
 Output: The object class to which the 

central pixel of the window belongs 
 The CNN classifier is applied to all 

pixels of an input images and 
produces an equally sized feature 
marking output image 

 Point clustering (e.g., using DBSCAN) 
can be used to extract list of geometric 
objects (pores, damages, …) 

 Supervised positive training 
(classification of known features 
classes)  
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ANOMALY DETECTION IN FML CT DATA 

 Goal: Find (mark) damages (deformation, cracks, delaminations) in 3D CT volumes 

 Method: Z-Slicing of 3D CT volumes and application of an anomaly detector to z-profiled slices  
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ANOMALY DETECTION IN FML CT DATA: NEGATIVE TRAIN. 

 An anomaly detector is build with a Autoencoder, either using a CNN or a LSTM-ANN 
 The AE is trained with z-profile slices without defects or damages (base-line, ground truth data) 
 The AE „learns“ the z-profile structure of the FML plates and outputs a simplified representation (neg. Train.)  
 If there is a damage/defect, the AE is not able to reconstruct the base-line structure, and an error occurs 
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ANOMALY DETECTION IN FML CT DATA: NEGATIVE TRAIN. 

 A CNN is trained with damaged z-profiles to classify damaged versa undamged z-profile slices 
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ANOMALY DETECTION IN FML CT DATA: SIMULATION 

 A typical sample set contains less than 10 different specimens, each with a distint and unique impact 
damage (and base-line = no damge) 

 Data augmentation by simulation is required to increase feature and data variance! 

 But in contrast to mechanical pore modelling in homogeneous materials, modelling of impact damages 
in FML is much more complicated reaching high accuracy (wrt. real structures and images)   

 Hand-made layer boundary point-marking using image tools 

 Functional approximation → 3D CAD model → X-ray simulation 
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ANOMALY DETECTION IN FML CT DATA: SIMULATION 
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CONCLUSIONS 

Data 

 Single- and Multi-Proj. X-ray Images 
 Data and feature variance is always 

limited! 
 CT scans require high measuring time 

and produce big data volumes 

 Noise (LowQ) 

 Supervised Learning: Hand-made 
labelling is a challenge and 
inaccurate  
 Relation between image and target 

features can be very low (contrast) 

 CT data can not be used directly for 
labelling due to geometrical 
distortions (wrt. single projection input 
data) 

Methods 

 3D CT reconstruction using Filtered 
Back Projection (sine wave filters) 

 Convolutional Neural Networks for 
pore and damage feature marling 
(data-driven negative training) and 
LSTM anomaly detectors (positive 
training)  

 X-ray simulation based on Beer-
Lambert law and multi-material 
polygon mesh models 

 Monte Carlo simulation of materials 
with defects and damages 
(openSCAD, Constructive Solid 
Geometry) 

 Measuring devices: LowQ, MidQ, 
HighQ 

Results 

 A pure data-driven feature marking 
model (semantic image pixel 
classifier) trained with synthetic 
images only can be applied to real 
images 

 The semantic pixel feature marling 
model is capable to highlight low-
contrast features (e.g., hidden 
pores) 

 X-ray noise has significant impact 
on feature prediction results 

 Accurate and representative 
training examples (labelling, 
simulation models) are a pre-
requisite for robust data-driven 
models and a challenge! 
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Don’t trust 
data-driven 

modells! 
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