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Abstract. Automated damage detection in Carbon-Fibre and Fibre Metal Laminates is

still a challenge. Impact damages are typically not visible from the outside. Different

measuring and analysis methods are available to detect hidden damages, e.g., delamina-

tions or cracks. Examples are X-ray computer tomography and methods based on guid-

ed ultrasonic waves (GUW). All measuring techniques are characterised by a high-

dimensional sensor data, in the case of GUW that is a set of time-resolved signals as a

response to a actuated stimulus. We present a simple but powerful two-level method

that reduces the input data (time-resolved sensor signals) significantly by a signal

feature selection computation finally applied to a damage predictor function. Beside

multi-path sensing and analysis, the novelty of this work is a feed-forward ANN posing

low complexity and that is used to implement the predictor function that combines a

classifier and a spatial regression model.

Keywords. SHM, Multipath Monitoring, Feature Selection, Analytical Signal, Classifi-

cation, Regression, Artificial Neural Network

1. Introduction

Structural Health Monitoring (SHM) in Carbon-Fibre and Fibre Metal Laminates

(FML) is used to detect and assess mainly hidden damages under the hood. Damage

detection, classification, and localisation is part of the lower levels of SHM. SHM is an

extremely useful tool for ensuring integrity and safety, detecting the evolution of dam-

age, and estimating performance deterioration of civil infrastructures, but relies heavily

on the robustness and accuracy of the underlying damage feature detectors. Early dam-

age detection can avoid situations which can be catastrophic. SHM can allow efficient

maintenance works and can avoid unnecessary inspections, furthermore, saving time

and money.
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One prominent measuring technique for damage detection is the monitoring of guided

ultrasonic waves resulting from stimulated ultrasonic emission. Guided Ultrasonic

waves (GUW) interact with damages and defects resulting in a modification of the

time-resolved ultrasonic sensor signal at a given sensor position. The difference of a

signal from a damage interaction with the baseline is typically low and difficult to

detect. Additionally, the wave propagation and wave-damage interaction depend on ex-

trinsic parameters such as temperature and moisture [MOL18], and manufacturing

variance [10]. Although, ML can exploit the relevant damage features from the sensor

signals by, e.g., supervised training using a highly non-linear function (function graph

implemented by an Artificial Neural Network ANN) [ROS05,SAR16], advanced feature

selection can improve the damage prediction accuracy and reduces the functional com-

plexity of the predictor function significantly. The wave propagation depends beside

material properties and the signal frequency from temperature and moisture (inside the

material if it is a composite material). ANNs posing low complexity were already suc-

cessful applied to damage detections [2] [3].

This work addresses a novel two-stage damage detection method that uses supervised

Machine Learning (ML) for the training of a damage feature predictor function from

experimental data that is able to provide binary damage classification and spatial dam-

age localisation information with high accuracy and reliability even under varying en-

vironmental conditions. The output of a non-linear regression function graph model (a

traditional Artificial Neural Network with sigmoid transfer functions) is a two-

dimensional vector providing an estimated positions of a damage (and the encoded

non-damage case). The input of this predictor function is a medium dimensional

feature vector that is derived by envelope curve approximation of the measured raw

time-resolved ultrasonic wave signal. The ultrasonic waves interact with the damage

resulting in a modification of the measured signal finally providing the feature vector

[4]. In contrast to other approaches, this approach uses multi-path measurements, i.e.,

signal recordings of different spatial paths between an actuator and a sensor covering

the whole device under test area. The derived features are characteristics of the record-

ed signals with respect to the desired damage information. Finally, a damage predictor

function is trained under varying environmental conditions having impact of the wave

interaction and the derived features, here specifically the ambient and device tempera-

ture [5].

Beside multi-path sensing and analysis using already recorded sensor data of a CFK

plate from the Open Guided Waves data base [6] [7], the novelty of this work is a

feed-forward ANN used to implement the predictor function that combines a classifier

and a spatial regression model, reducing computational and memory complexity, a con-

straint for the implementation in embedded sensor node systems.

2



S. Bosse, C. Polle - ECSA 2021, MDPI

2. Multi-path Sensor Data

The data source in this work is time-resolved ultrasonic signal data from an active

measuring technique, i.e., the signal response is a result of an active stimulus. A

piezo-electric actuator that is coupled to the surface of the device under test (or embed-

ded inside a lamnination layer like the CFK plate used in this work) injects a sine-

wave like pulse group (about 10 waves). The guided waves propagate through the ma-

terial and partially on the surface. The guided wave interacts with the material and po-

tential defects and damages. The damage interaction leads to a change of the original

damage-free signal only in small part of the signal with respect of the time dimension,

shown in Fig. b, the Region-of-Interest (ROI). The identification of the ROI is difficult,

depending on a-priori knowledge and the strength of damage-wave interaction that can

be weak. Beside using the raw time series data, typically transformed in frequency or

time-frequency space (like FFT or DWT), characteristic feature parameters should be

derived numerically from the signal.
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Fig. 1. The device under test is a plate (a) that is equipped with 12 piezo-electric

transducers that can act as ultrasonic actuators and sensors. Six direct paths are meas-
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ured simultaneously. The time-resolved sensor data (b) is processed by analytical

signal feature selection (c).

y
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├─────────────────────────┐
│ T5 T4 T3 T2 T1 T0 │
│ 1 2 │ ─┬─
│ 3 4 5 6 │ │
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└─────────────────────────┴─ x
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Fig. 2. Transducer positions T0..T11 and defect positions D1..D28

There are two data set groups that are available from the OGW data base feature dif-

ferent measurements with pseudo defects (positions shown in Fig. 2):

1. Five data tables with recorded GUW signals with a dynamic temperature profile

(20-60°C) and a sub-set of four defect positions D4, D10, D14, D24, and a base

line measurement without a defect (named here dynamic data set);

2. 33 data tables with recorded GUW signals at a static temperature (24°C) and all

28 defect positions and the base line measurement (named here static data set).

3. Feature Selection

In general, the aim of feature selection is the mapping of the raw time-resolved signal

data s(t) on a damage relevant and representative small set of feature parameters f
→

by
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ψi,j : ~si,j → ~fi,J

~s = 〈s(t = 0), s(t = 1), ..〉

~F =





T

ω
~fi,j





a feature selection function ψ:

(1)

But the GUW depends on the temperature of the medium in which the waves pro-

pagate and as a result the damage features are dependent on the environmental state,

mostly the temperature [4]. Relevant damage features are contained in the envelope of

the signal burst, commonly related to the envelope of the dominant wave group, mainly

the hight (max), the time point of the maximum (tmax), and the full width at half max-

imum fwhm. These parameters strongly dependent on the material temperature as a

result of the wav propagation. Details can be found in [4]. To derive the envelope of

the signal burst, two numerical approaches can be used:

1. Computing the magnitude of the complex analytical signal by a Hilbert transfor-

mation of the time-resolved signal s(t (non-iterative approach);

2. By finding the maximum signal peak and performing a constrained Gaussian peak

fitting of the wave group around the maximum, i.e., fitting a Gaussian function to

the envelope of the signal group (iterative approach).

sa(t) = s(t) + i

[

s(t) ∗
1

πt

]

= s(t) + iH{s(t)}

H(s(t)) = |sa(t)|

For a given time dependent signal s(t) the analytical signal sa(t) is given as:

(2)

The analytical signal bases basically on a convolution operation (∗) but can be derived

X [ω] = τ

N−1
∑

n=0

s[n]e−i2πωnτ

Z[m] =















X [0] if m = 0
2X [m] if 1 ≤ m ≤

N

2
− 1

X
[

N

2

]

if m = N

2

0 if N

2
+ 1 ≤ m ≤ N − 1

H [n] =
1

NT

N−1
∑

m=0

Z[m]ei2πm
n

N

by using the discrete Fourier transforms (DFT, and fast version FFT):

(3)
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with τ: sampling interval, ω: frequency, X: forward DFT, Z; Hilbert transform in fre-

quency domain, H: final Hilbert transform in time domain by using the inverse DFT.

Characteristic features f i derived from the envelope of the signal s(t) are [4] (see also

Fig. 1 c):

• The absolute (normalized) maximum value of the dominant envelope peak max;

• The time position at the maximum tmax;

• The full width at half maximum of the envelope peak fwhm;

• And a time-of-flight parameter tof.

All theses features are dependent on the signal frequency ω, the temperature T, and for

the normalization on the stimulus amplitude, i.e., f i=f i(ω, T), .

4. Predictor Model Function

A classical feed-forward fully connected neuronal network with one or two hidden

layers is used to predict the damage position p→=(x, y) in normalized coordinates

x=[0,1], y=[0,1]. An output |p| < ε indicates the absence of a damage, i.e., x and y ≈ 0.

Therefore, the predictor function combines a classifier and a spatial regression model,

shown in Fig. 3, reducing computational and memory complexity, a constraint for the

implementation in embedded sensor node systems.
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Fig. 3. One two-dimensional output predictor function M combines a damage classifier

and a damage position (px =y 1,py =y 2) regression function
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The input of the network is a vector containing the material temperature T, the signal

frequency ω, and selected features from all six straight path (φ=0) ultrasonic signal

measurements. Typical features derived from the feature selction process are max and

tmax. Additional computed feature parameters are time-of-flight tof and the full width

M(F ) : ~F → ~p

~F =













T

ω

maxi,j
tmaxi,j

..













, ∀(i, j) ∈ conf(i, j)

conf(i, j) = {〈0, 6〉, 〈1, 7〉, 〈2, 8〉, 〈3, 9〉, 〈4, 10〉, 〈5, 11〉}

~p = (x, y)

at half maximum fwmh.

(4)

The input layer consists of ||F
→

|| neurons depending on the selected sub-set of features.

The output layer consists of two neurons providing an estimation of the damage x- and

y-positions, respectively. The output is normalized to a spatial range of [0.2,0.7] that

corresponds to a geometric range of [0,0.5m]. The non-damage case is predicted if |p→|

< ε (e.g., ε=0.02); Any px or py ∈ (0.7,1.0] or (ε,0.2) indicates a prediction error!

5. Functional Scaling

The target host environment for the deployment of the damage predictor function is an

embedded sensor node equipped with a low-resource and low-power microcontroller.

This sensor node acquires the multi-path raw sensor signals, performs the feature selec-

tion pre-processing and the application of the predictor function. Even if the training of

the predictor function takes place off-line, the application of the predictor function

should be performed on-line. The predictor function consists of the signal pre-

processing with the previously introduced feature selection algorithm, and the forward

computation of the ANN. Tab. 1 and 2 show typical computational times for the feature

selection represented by the major part of the Hilbert transformation and the ANN ap-

plication. Different host computer architectures and processing platforms (i.e., native

machine code and VMs node.js and quickjs). For both algorithms there is a JavaScript

and a C implementation. The Raspberry Pi Zero is a small low-power embedded com-

puter, although, it is still oversized compared with material-integrated nano computers

(less than 100MHz CPU clock and about 100kB RAM), both algorithms can be imple-

mented and processed on such low-resource systems.

The computational complexity of the ANN is neglectible compared with the feature

computation process (about 1:1000). For each prediction, m Hilbert transformations

must be performed for m paths. But even using the slowest but embeddable JavaScript

7



S. Bosse, C. Polle - ECSA 2021, MDPI

quickjs platform, the entire prediction requires less than two seconds on a RP Zero.

Assuming a computational power ratio of 1:100 comparing the RP Zero with a

material-integrated nano computer (e.g., the ancient Micro Mote M3), a native code

implementation of the full predictor program requires only three second computation

time, which can be still considered as sufficient. Probably FIR/IIR filter-bank approach

approximating the Hilbert transform can provide an additional reduction of the

computational complexity.

__________________________________________________________________________________________________________________________________________________________

Host Platform Function Performance_____________________________________________________________________________

Intel i5-3427U

1.80GHz

node.js 8.12 dhrystone

benchmark

5400k dhry/sec

Intel i5-3427U

1.80GHz

node.js 8.12 ann-model-14-8-2 10µsec/pred

Intel i5-3427U

1.80GHz

gcc 6.3 -O2 ann-model-14-8-2 0.8µs/pred

Intel i5-3427U

1.80GHz

node.js 8.12 hilbert-fft (4096

points)

1ms/trans

Intel i5-3427U

1.80GHz

gcc 6.3 -O2 hilbert-fft (4096

points)

0.5ms/trans

__________________________________________________________________________________________________________________________________________________________

Tab. 1. Computation times for the central feature selection (Computation of analytical

signal by Hilbert transform) and the application of the ANN predictor model for vari-

ous processing platforms (gcc: C and native machine code, node.js/quickjs: JavaScript

code)

__________________________________________________________________________________________________________________________________________________________

Host Platform Function Performance_____________________________________________________________________________

Raspberry Pi Zero

W 1.0GHz

node.js 8.12 dhrystone bench-

mark

200k dhry/sec

Raspberry Pi Zero

W 1.0GHz

quickjs 2021.3 dhrystone bench-

mark

8k dhry/sec

Raspberry Pi Zero

W 1.0GHz

node.js 8.12 ann-model-14-8-2 30µsec/pred

Raspberry Pi Zero

W 1.0GHz

quickjs 2021.3 ann-model-14-8-2 300µsec/pred
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__________________________________________________________________________________________________________________________________________________________

Host Platform Function Performance_____________________________________________________________________________

Raspberry Pi Zero

W 1.0GHz

gcc 6.3 -O2 ann-model-14-8-2 5µs/pred

Raspberry Pi Zero

W 1.0GHz

node.js 8.12 hilbert-fft (4096

points)

25ms/trans

Raspberry Pi Zero

W 1.0GHz

quickjs 2021.3 hilbert-fft (4096

points)

300ms/trans

Raspberry Pi Zero

W 1.0GHz

gcc 6.3 -O2 hilbert-fft (4096

points)

5ms/trans

__________________________________________________________________________________________________________________________________________________________

Tab. 2. Computation times for the central feature selection (Computation of analytical

signal by Hilbert transform) and the application of the ANN predictor model for vari-

ous processing platforms (gcc: C and native machine code, node.js/quickjs: JavaScript

code)

6. Evaluation

The existing GUW signal data [6] was taken from the OGW server and a broad set

records signal data sets were stored in SQL tables for further processing. The feature

selection computation using the Hilbert transform and conventional peak analysis algo-

rithms was originally performed with Python code [4]. The predictor function was im-

plemented with a modified version of the Neataptic JavaScript ANN framework [8].

The experimental matrix consist of:

• Two data sets: (D) Dynamic temperature profile (T=20-50°C, 4 defect positions), (S)

Static temperature (T=24°C, 28 defect positions), recorded GUW sensor date from a

500x500 mm CFK plate with attached pseudo defects;

• Different feature parameter sets: {max, tmax, T}, {max, tmax, fwhm, T}, {max, tmax,

fwhm, tof, T}

• Different network architectures: [I, H1, H2,.., O]

• Two different input variable scaling methods: Static, i.e., a feature is scaled equally

for all paths with a fixed scale; Auto: a feature is scaled automatically and indepen-

dently for all paths.

• Different Training- and Testset combinations: {D/D, D/S, SD/SD, SD/Dm SD/S}

Due to the limited data set variance, the test of the model accuracy was tested with

training data with different combinations of the dynamic and static temperature data

sets. Although, Monte Carlo simulation was used to augment training data by adding
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Gaussian noise, no further data augmentation was performed. Therefore, the results

shown in Tab. 3 and Tab. 4 cannot conclude any generalization quality of the trained

model. The position error threshold was set to 100mm (error above is classified as an

incorrect position prediction). The non-damage detection threshold was set to 0.05/1.0.

The results in Tab. 3 and Tab. 4 show the average defect position estimation accuracy

delivered by the predictor function, the fraction of incorrectly located defects (position

error too large), and the binary defect classification rates true-positive (TP, damage),

true-negative (TN, no damage) with their negative counterparts false-positive (FP) and

false-negative (FN).

________________________________________________________________________________________________________________________________________________________________

Features

F
→

(40kHz)

Model

[Layer]

Scaling Training

Data

[%]

Test

Data

[%]

Mean.

Pos.

Error

[%]

Position

Incorrect

[%]

TP/FP,

TN/FN

[%]

________________________________________________________________________________

max,

tmax, T

[14,8,2] Fixed D=100,

S=100

D=100,

S=100

3 4 100/0,

100/0

max,

tmax, T

[14,8,3,2] Fixed D=100,

S=100

D=100,

S=100

5 9 100/0,

100/0

max,

tmax, T

[14,8,3,2] Auto D=100,

S=0

D=100,

S=0

2 0 100/0,

100/0

max,

tmax,

fwhm, T

[20,8,2] Fixed D=100,

S=100

D=100,

S=100

9 16 100/0,

91/9

max,

tmax,

fwhm,

T, tof

[26,8,2] Fixed D=100,

S=100

D100,

S=100

6 21 100/0,

100/0

max,

tmax, T

[14,8,3,2] Fixed D=100,

S=0

1D=100,

S=0
2D=0,

S=100

13 248 10 270 1100/0,

100/0
220/80,

100/0________________________________________________________________________________________________________________________________________________________________

Tab. 3. Prediction results for ω=40kHz (D: Dynamic temperature data set, S: Static

temperature)
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________________________________________________________________________________________________________________________________________________________________

Features

F
→

(80kHz)

Model

[Layer]

Scaling Training

Data

[%]

Test

Data

[%]

Mean.

Pos.

Error

[%]

Position

Incorrect

[%]

TP/FP,

TN/FN

[%]

________________________________________________________________________________

max,

tmax, T

[14,8,2] Fixed D=100,

S=100

D=100,

S=100

20 50 100/0,

33/67

max,

tmax, T

[14,8,4,2] Fixed D=0,

S=100

D=0,

S=100

16 36 100/0,

0/100

max,

tmax, T

[14,8,3,2] Auto D=100,

S=0

D=100,

S=0

4 3 100/0,

100/0

max,

tmax, T

[14,8,3,2] Auto D=100,

S=100

D=100,

S=100

12 27 100/0,

80/20

max,

tmax, T

[14,8,3,2] Auto D=100,

S=0

1D=100,

S=0,
2D=0,

S=100

15, 260 13, 285 1100/0,

100/0
20/100,

100/0________________________________________________________________________________________________________________________________________________________________

Tab. 4. Prediction results for ω=80kHz (D: Dynamic temperature data set, S: Static

temperature)

We observed that there is:

• A high accuracy of defect classification (100% TP, 100% TN) even under tempera-

ture variations in the range 20°-50°C can be achieved by a network with only one

hidden layer (8 neurons) and by using the major features max and tmax;

• The other minor features fwhm and tof can be discarded, they show no benefit (in

contrast, including them degrades model accuracy until the training damps them);

• A reasonable defect localisation with an average position error below 20 mm is pos-

sible;

• A high sensitivity of prediction results to feature parameter noise (even if low as 5%

Gaussian noise) and feature variable scaling (static and fixed versa dynamic and au-

tomatic);

• Training process and prediction accuracy shows high sensitivity on data normaliza-

tion (scaling);

• Probably only a specialized model was trained (due to low variances in defect posi-

tions and variations of environmental parameters);

• Suitable learning rate were chosen between 0.05 and 0.2 depending
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• A model trained by the dynamic data set (only four defects) show low accuracy for

the prediction of the static data set (even concerning the four damages contained in

the static data set, too)

• The accuracy of the prediction model depends on the signal frequency (40kHz

outperforms 80kHz)

• One hidden layer is typically suitable for achieving a high accuracy showing a low

non-linearity degree of this problem using;

• The training time for one model is about some minutes on a generic desktop

computer (JavaScript processed by node.js or in the WEB browser).

7. Conclusion

Using multi-path sensing of guided ultrasonic waves, advanced feature selection, and a

simple artificial neural network we were able to detect pseudo defects applied to a

CFK plate with a high probability (typically nearly 100%) and position accuracy (typi-

cally below 20 mm or better) in a wide range of material temperature (20-50°C). The

advanced feature selection bases on a Hilbert transform of the time-resolved signal data

and maximum peak analysis. The computed features are the input vector for the ANN

predictor functions that combines a binary damage/defect classifier with a two-

dimensional position regression of the damage. Typically only one hidden layer with a

few neurons are suitable to achieve high accuracy and TP/TN rates.

It could be shown that the proposed analysis method is suitable to be implemented in

embedded systems including material-integrated nano computers providing damage

detection within 10 seconds after signal measurement, which is sufficient for a broad

range of applications in SHM. Using signal down-sampling and optimized implementa-

tions of the FFT and Hilbert transform should provide prediction times below 1 second

(on an embedded nano computer) The feature selection reduces the input data vector

dimension from 4096 samples × 6 paths (24576) to lowest dimension of 14 (maximal

26 depending on the selected feature sub-set)!

This work bases on already existing data lacking variance with respect to defect posi-

tions, material properties, and environmental conditions. Further investigations using

GUW measurements for a Fibre-Metal Laminate plate are under work and should

create a suitable training and test data set that allows assessment of the robustness and

generalization degree of the trained model.
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