
Programming of Mobile Agents and theJavaScript Agent Machine (JAM)
Dr. Stefan Bosse

Version 2018-08-15

Contents
1. Reactive Agents and the ATG Model 22. AgentJS 43. JAM: The JavaScript Agent Machine 54. Agent Input-Ouput System (AIOS) 74.1. Agent Scheduling and Check-pointing 74.2. AgentJS API: Computational Functions 104.3. AgentJS API: Environmental Information and Modification 134.4. AgentJS API: Tuple Space Operations 144.4.1. Active Tuples . 164.5. AgentJS API: Signals and Signal Handler 174.6. AgentJS API: Agent Control . 194.7. AgentJS API: Mobility . 214.8. AgentJS API: Ad-hoc Connectivity 234.9. AgentJS API: Scheduling Blocks . 234.10. AgentJS API: SQL Operations∗ . 245. JAM API 256. JAMLIB 256.1. Synopsis . 256.2. Description . 277. Using JAM 277.1. JAM Library . 277.2. Creating a simple JAM Instance . 287.3. Adding and Importing Agent Class Templates 297.4. Creating Agents programmatically 297.5. Connecting JAM nodes . 307.6. Extending AIOS of JAM . 317.7. Extended IO of JAM: Adding tuple providers 318. JAMSH 328.1. Synopsis . 328.2. Description . 34

1

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

8.3. Networking . 348.3.1. UDP Unicast ports and links 348.3.2. UDP Multicast ports and links 358.3.3. UDP Multicast ports using broker service 358.4. Example . 359. JAM APP 369.1. GUI . 369.2. Options . 389.3. Configuration File . 389.4. Node Management Agent . 3910. Simulation 4110.1. Physical Simulation . 4510.2. Table Reports . 51

1. Reactive Agents and the ATG Model
The behaviour Φ of reactive agents is centered around the concept of a per-ception→ processing→ reasoning→ action→ decision cycle with actions ex-ecuted within activities.
Phase Description
Perception Get input data from the environment. The environmentaldata consists of data from other agents and sensorsProcessing The new input data is processed
Reasoning Interpretation of the input data related to the currentstate of the agentAction Modify the environment (platform & agents) usingcomputed output data.Decision Decide what to do next

The agent behaviour can be considered as composition of activities (A) andtransitions (T) between activities forming an AT graph (ATG). Activities can beconsidered as sub-behaviour satisfying a particular goal of the agent. The agentmodel is composed of the ATG representing the control state and a set of bodyvariables representing the data state of an agent. The execution of an agent isencapsulated by a dynamic process. The control state of a process is primarilygiven by the next activity pointer. An agent is processed by a platform (AgentProcessing Platform APP). Agent activities perform computation (modificationof agent body variables), environmental interaction with other agents and plat-forms.

Reactive Agents and the ATG Model 2

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Figure 1. (Left) Agent BehaviourModel: Activity-Transition Graph and body vari-ables (agent data) compose an agent class. (Right) Interaction with the environ-ment (agents and platform) via tuple space access, signals, and mobility.

Environmental interaction consists of the following classes:
• Synchronized data exchange with other agents using tuple space and sig-nal operations
• Creation and destruction of agents (in particular forking of child agents)
• Mobility by migration of an agent process snapshot to another platformnode
• Modification of the agent behaviour by changing the ATG (adding, delet-ing, modifying transitions and activities at run-time)

A tuple space is a database that stores n-dimensional tuples (arity) providingsynchronized shared memory. Each element of a tuple (column) stores a value(number, string, object, array). The database is organized with respect to thearity of the tuples. All tuples with a common arity are grouped in a tuple sub-space. Tuples are stored by producer agents and are consumed by agents usingpattern matching. Tuples are generative, i.e., a tuple can longer exists than theproducing agent.
Transitions between activities can be unconditional or conditional based onthe evaluation of expressions testing body variables. Some operations, e.g.,reading a tuple from the tuple space, can block activity execution and activitytransition until an IO event occurs. Therefore, even unconditional transitionsare conditional related to the process state of an agent.

AgentJS 3

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

2. AgentJS
JavaScript is a widely used language initially designed for dynamic WEB pages.The programming model of JavaScript has two relevant influences: 1. Func-tional Programming 2. Object-orientated Programming.
AgentJS is a programming language for reactive agents based on the previouslyintroduced ATG behaviour model. AgentJS is syntactically a JavaScript languagewith some semantic and operational changes. The agent behaviour is speci-fied with an agent constructor function (class template). This function has thefollowing basic structure:
Generic structure of an AgentJS constructor function
function ac(options) {

this.x=0;
this.y=options.foo;

this.act = {
act1: function () { .. },
act2: function () { .. },
act3: function () { .. },
..
acti: function () { .. }

}

this.trans = {
act1: function () { return <next> },
act2: <next>.
..

}

this.on = {
’<SIG>’: function (arg) { ..},
..
’<ERROR>’: function (err) { .. },

}
this.next = <start>;

}

From an agent class template multiple agent objects can be instantiated.An AgentJS class template defines agent body variables (only accessible withinand bound to the agent object by using the this object, i.e., this.XX=<expr>).An agent can be instantiated with arguments passed to the constructor

AgentJS 4

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

function parameters. The parameter variables can only be accessed duringagent object creation and have to be assigned to agent body variables.
The first required large section this.act defines all named activities of theagent. With each activity the body variables can be accessed by the using the
this object. The AIOS defines a large set of functions that can be used byagents, e.g., the iter(o,fun) function that can be used to iterate over arraysand objects. If a function is passed to an AIOS function then agent body vari-ables can be accessed within the function body using the this object, too!
The next required section this.trans defines all transitions between activi-ties. Each starting activity is referenced by its name followed either by a func-tion, e.g., act1:function () { return act2} returning the next activity (con-ditional or unconditional) or immediately by an activity name, e.g., act1:act2.
The event and exception handler section this.on is optional and can be usedto define user defined signal handler and error handler.
Finally, the definition of the next activity pointer this.next and the initial ac-tivity is required, e.g., this.next=act1.

3. JAM: The JavaScript Agent Machine
Heterogeneous information networks require a unified agent processing plat-form, which can be deployed on a wide variety of host platforms, ranging fromembedded devices, mobile devices, to desktop and server computers. E.g., in aseismic network some measuring stations are attached to buoy or installed onsmall islands, equipped only with low-power low-resource computers.
To enable seamless integration of mobile MAS inWeb and Cloud environments,agents are implemented in JavaScript (JS), executed by the JS Agent Machine(JAM), implemented entirely in JS, too.
JAM can be executed on any JavaScript engine, including browser engines(Mozilla’s SpiderMonkey), or from command line using node.js (based on V8)or jxcore (V8 or SpiderMonkey), or a low-resource engine JVM, shown in Fig. 1.The last three extend the JS engine with an event-based (asynchronous usingcallback functions) IO system, providing access of the local file system and pro-viding Internet access. But these JS engines have high resource requirements(memory), preventing the deployment of JAM on low-power and low-resourcesembedded devices. For this reason, JVM was invented. This engine is basedon jerryscript and iot.js from Samsung, discussed in Gavrin (2015). JVM is aBytecode engine that compiles JS directly to Bytecode from a parsed AST. ThisBytecode can be stored in a file and loaded at run-time. JVM is well suited forembedded and mobile systems, e.g., the Raspberry PI Zero equipped with anARM processor. JVM has approximately 10 times lower memory requirement

JAM: The JavaScript Agent Machine 5

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

and start-up time compared with nodes.js. JAM consists of a set of modules,with the AIOS module as the central agent API and execution level.
JAM is capable of handling thousands of agents per node, supporting virtual-ization and resource management. Depending on the used JS VM, agent pro-cesses can be executed with nearly native code speed. JAM provides MachineLearning as a service that can be used by agents.
JAM is available as an embeddable library (JAMLIB). The entire JAM applicationrequires about 600kB of compacted text code (500kB Bytecode), and the JAM-LIB requires about 400kB (300kB Bytecode), which is small compared to otherAPPs. JVM+JAMLIB requires only 2.7 MB total RAM memory on start-up.
The agent behaviour is modelled according to an Activity-Transition Graph(ATG) model. The behaviour is composed of different activities representingsub-goals of the agent, and activities perform perception, computation, andinter-action with the environment (other agents) by using tuple spaces and sig-nals. Using tuple spaces is a common approach for agent communication, asproposed by Chunlina (2002), much simpler than Bordini (2006) proposed withAgentSpeak. The transition to another activity depends on internal agent data(body variables). The ATG is entirely programmed in JavaScript (AgentJS, seeBosse (2016B) for details).
JAM agents are mobile, i.e., a snapshot of an agent process containing the en-tire data an control state including the behaviour program, can migrate to an-other JAM platform. JAM provides a broad variety of connectivity, available on abroad range of host platforms. JAM can be used as a simulation platform inte-grated in the SeJAM simulator. JAM is capable to execute thousands of agents.The SeJAM simulator is built on top of a JAM node adding simulation controland visualization, and can be included in a real-world closed-loop simulationwith real devices.
In real-world application security is an important key feature of a distributedagent platform. The execution of agents and the access of resources must becontrolled to limit Denial-of-Service attacks, agent masquerading, spying, orother abuse, agents have different access levels (roles).
There are four levels:

0. Guest (not trusting, semi-mobile)
1. Normal (maybe trusting, mobile)
2. Privileged (trusting, mobile)
3. System (trusting, locally, non-mobile)

The lowest level (0) does not allow agent replication, migration, or the creationof new agents. The JAM platform decides the security level for new receivedagents. An agent cannot create agents with a higher security level than its own.

JAM: The JavaScript Agent Machine 6

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

The highest level (3) has an extended AIOS with host platform device accesscapabilities. Agents can negotiate resources (e.g., CPU time) and a level raisesecured with a capability-key that defines the allowed upgrades. The systemlevel can not be negotiated. The capability is node specific. A group of nodescan share a common key (identified by a server port). A capability consists ofa server port, a rights field, and an encrypted protection field generated with arandom port known by the server (node) only and the rights field.
Among the AIOS level, other constrain parameters can be negotiated using avalid capability with the appropriate rights:

• Scheduling time (longest slice time for one activity execution, default is20ms)
• Run time (accumulated agent execution time, default is 2s)
• Living time (overall time an agent can exist on a node before it is removed,default is 200s)
• Tuple space access limits (data size, number of tuples)
• Memory limits (fuzzy, usually the entire size of the agent code includingprivate data, actually not limited)

4. Agent Input-Ouput System (AIOS)
The Agent Input-Output System (AIOS) is the interface and abstraction layer be-tween agents programmed in AgentJS and the agent processing platform (JAM).Furthermore, it provides an interface between host applications and JAM.

4.1. Agent Scheduling and Check-pointing
JS has a strictly single-threaded execution model with one main thread, andeven by using asynchronous callbacks, these callbacks are executed only if themain thread (or loop) terminates. This is the second hard limitation for theexecution of multiple agent processes within one JS JAM platform. Agents pro-cesses are scheduled on activity level, and a non-terminating agent processactivity would block the entire platform. Current JS execution platform includ-ing VMs in WEB browser programs provide no reliable watchdog mechanismto handle non-terminating JS functions or loops. Though some browsers candetect time outs, they are only capable to terminate the entire JS program. Toensure the execution stability of the JAM and the JAM scheduler, and to enabletime-slicing, check-pointing must be injected in the agent code prior to execu-tion. This step is performed in the code parsing phase by injecting a call to acheckpoint function CP() at the beginning of a body of each function contained
Agent Input-Ouput System (AIOS) 7

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

AIOS

Agent

Agent

Agent

Agent

HOST
Program

Tuple DB Code Node Proc.

Signal Reconf. World Comm.

Agents

Modules

Figure 2. Interface between agents and JAM and between JAM and a host ap-plication: Agent Input-Output System (AIOS)

Agent Input-Ouput System (AIOS) 8

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

in the agent code, and by injecting the CP call in loop conditional expressions.Though this code injection can reduce the execution performance of the agentcode significantly, it is necessary until JS platforms are capable of fine-grainedcheck-pointing and thread scheduling with time slicing. On code-to-text trans-formation (e.g., prior to a migration request), all CP calls are removed.
AIOS provides a main scheduling loop. This loop iterates over all logical nodesof the logical world, and executes one activity of all ready agent processes se-quentially. If an activity execution reaches the hard time-slice limit, a SCHEDULEexception is raised, which can be handled by an optional agent exception han-dler (but without extending the time-slice). This agent exception handling hasonly an informational purpose for the agent, but offers the agent to modify itsbehaviour. All consumed activity and transition execution times are accumu-lated, and if the agent process reaches a soft run-time limit, an EOL exceptionis raised. This can be handled by an optional agent exception handler, whichcan try to negotiate a higher CPU limit based on privilege level and availablecapabilities (only level-2 agents). Any ready scheduling block of an agent andsignal handlers are scheduled before activity execution.
After an activity was executed, the next activity is computed by calling the tran-sition function in the transition section.
In contrast to the AAPL model that supports multiple blocking statements (e.g.,IO/tuple-space access) inside activities, JS is not capable of handling any kindof process blocking (there is no process and blocking concept). For this reason,scheduling blocks can be used in AgentJS activity functions handled by the AIOSscheduler. Blocking AgentJS functions returning a value use common callbackfunctions to handle function results, e.g., inp(pat,function(tup){..}).
A scheduling block consists of an array of functions (micro activities), i.e.,
B(block) = B([function(){..}, function(){..},...])., executed one-by-one by the AIOS scheduler. Each function may contain a blocking statementat the end of the body. The this object inside each function references alwaysthe agent object. To simplify iteration, there is a scheduling loop constructorL(init, cond, next, block, finalize) and an object iterator constructor I(obj, next,block, finalize), used, e.g., for array iteration. Agent execution is encapsulatedin a process container handled by the AIOS. An agent process container can beblocked waiting for an internal system-related IO event or suspended waitingfor an agent-related AIOS event (caused by the agent, e.g., the availability of atuple). Both cases stops the agent process execution until an event occurred.
The basic agent scheduling algorithm is shown in the following algorithm andconsists of an ordered scheduling processing type selection, i.e., partitioningagent processing in agent activities, transitions, signals, and scheduling blocks.In one scheduler pass, only one kind of processing is selected to guaranteescheduling fairness between different agents. There is only one scheduler usedfor all virtual (logical) nodes of a world (a JAM instance). A process priority isused to alternate activity and signal handling of one agent, preventing long

Agent Input-Ouput System (AIOS) 9

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

activity and transition processing delays due to chained signal processing ifthere are a large number of signals pending.
Algorithm 1. (JAM Agent Scheduler)
∀node ∈ world.nodes do
∀process ∈ node.processes do
· Determine what to do with prioritized conditions :

Order of operation selection :
0. Process (internal) block scheduling [block]
1. Resource exception handling
2. Signal handling [signals]

− Signals only handled if process priority < HIGH
− Signal handling increase process priority temporarily to
allow low − latency act/trans scheduling!

3. Transition execution
4. Agent schedule block execution [schedule]
5. Next activity execution

− Lowers process priority

if process.blocked or process.dead or
process.suspended and process.block = [] and process.signals = [] or
process.agent.next = none and process.signals = [] and process.schedule = []

then do nothing
else if not process.blocked and process.block¹[]
then execute next block function
else if agent resources check failed
then raise EOL exception
else if process.priority < HIGH and process.signals¹[]
then handle next signal, increase process.priority
else if not process.suspended and process.transition
then get next transition or execute next transition handler function
else if not process.suspended and process.schedule¹[]
then execute next agent schedule block function
else if not process.suspended
then execute next agent activity and compute next transition,

decrease process.priority

4.2. AgentJS API: Computational Functions
There are various powerful and extended computational functions that can beused by agents. Please note that for some reason arrays and objects cannotbe iterated in agent processes by using the for(p in a) statement. Insteadthe iter function has to be used. Furthermore, the this object inside functioncallbacks references always the agent object, i.e., body variables and functions

Agent Input-Ouput System (AIOS) 10

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

can be accessed by the this object.
abs

function(number) → numberReturns absolute value of number.
add

function(a:number|array|object, b:number|array|object)
→ number|array|objectGeneral purpose addition operation for scalar numbers, arrays, and objectsof numbers.

iter
function(object|array, function (@element,@index?))Iteration over object attributes or array elements.

concat
function(array|string|object,array|string|object) → array|string|objectConcatenation operation for arrays, strings, and objects.

contains
function(array|object,(number|string)|(number|string)[]) → booleanChecks existence of an element or an array of elements in an array or object(attribute)

copy
function(array|object) → array|objectReturns a copy of an array or object. The object may not contain cyclicreferences.

div
function(number) → numberInteger division operation

empty
function(array|object) → booleanChecks if an object or array is empty ({} [])

equal
function(number|string|array|object, number|string|array|object)
→ booleanChecks equality of numbers, strings, arrays, and objects.

filter
function(array|object, function (@element,@index?) → boolean)
→ array|objectFilter operation for arrays and objects.

head
function(array) → *

Agent Input-Ouput System (AIOS) 11

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Returns head (first) element of array.
int

function(number) → numberReturns integer number.
isin

function(array|object,number|string|(number|string)[]) → booleanChecks existence of an element in an array or object (attribute). The ele-ment can be an array, too.
iter

function(array|object, function (@element,@index?))Iterator for arrays and objects.
length

function(array|object|string) → numberReturns length of an array, object or string.
map

function(array|object, function (@element,@index?) → *|none)
→ array|objectMap and filter operation for arrays and objects. If the user function returnundefined the element is discarded.

matrix
function(@cols,@rows,@init) → [] arrayCreate a matrix (array of arrays).

max
function(a:number|array,b?:number) → numberReturns largest number from two numbers or from array of numbers.

min
function(a:number|array,b?:number) → numberReturns smallest number from two numbers or from array of numbers.

neg
function(number|array) → number|arrayReturns negative number or array of numbers.

random
function(a:number|array|object,b?:number,frac?:number) → number|*Returns a random number from the interval [a,b] or an element from anarray or object. The optional fraction parameter specified the rounding pre-cision (frac=1 return integer numbers).

sort
function(array, function (@element1,@element2) → number)
→ arraySorts an array by a user function returning {-1,0,1} numbers. Descending

Agent Input-Ouput System (AIOS) 12

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

order is reached if a<b return a positive value, otherwise if a negative valueis returned an ascending order is reached.
sum

function(array|object,function?) → numberReturns the sum of elements of an array or attributed of an object. Theoptional user mapping function can be used to return a computed value foreach element.
string

function(*) → stringReturns string representation of argument.
tail

function(array) → *Returns tail (last) element of array.
zero

function(number|array|object) → booleanChecks if a number, all elements of an array or all attributes of an object arezero.
Examples
this.a=[1,2,3];
this.o={real:2.0,img:3.1};

this.sq = function (objORarray) {
var res=0;
iter(objORarray,function (elem,index) {

res=res+elem*elem;
});
return res;

}
..

var x,y,z;
x=this.sq(a); // x==14
y=this.sq(o); // y==13.61
z=sum(a); // z==6
if (zero(this.o)) this.o={real:1.0,img:1.0};

..

4.3. AgentJS API: Environmental Information and Modifica-tion
myClass
Agent Input-Ouput System (AIOS) 13

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

function () → stringReturns the class of the agent (if known). Same result is returned by access-ing the this.ac variable.
myNode

function () → stringReturns the identity name of the current JAM node.
myParent

function () → stringReturns the identity name of the parent agent of this agent (if any).
me

function () → stringReturns the identity name of this agent.
negotiate

function (resource:string,value:*,capability?) → boolean
with @resource=’CPU’|’SCHED’|’MEM’| ’TS’|’AGENT’|’LEVEL’Negotiate an agent constraint paramater. Level 0 and 1 agents require avalid access capability.

privilege
function () → number={0,1,2,3}Returns the current privilege level of the agent

4.4. AgentJS API: Tuple Space Operations
Tuple spaces are data bases storing vectors of values. Each tuple has a di-mension (the number of values) and a type interface. Tuples can be read orconsumed by using patterns. Patterns are like tuple but allowing wild-card val-ues (none). If there is no matching tuple found in the data base, the agentis suspended until a matching tuple arrives or a timeout occurs (by using the
try_* operations). Since JavaScript programs cannot block, a callback functionhas to be provided and the blocking operation must be placed at the end ofan activity or inside a scheduling block. Commonly the first value of a tuple isused as a key, but that is only a weak constraint. A tuple space has a linearstructure. To support complex hierarchical data bases, JAM provides a SQLitedata base server and access to this data base for level 3 agents. Tuple spacescan be mapped on tables in this SQL data base.
Examples for tuple access
out([’MARKING1’,1]);
out([’SENSORA’,100,true]);
inp([’SENSORA’,_,_],function (tuple) {

if (tuple) this.s =tuple[1];
});

Agent Input-Ouput System (AIOS) 14

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

rm([’SENSORA’,_,_],true);
try_rd(0,function (tuple) { .. });
ts([’MARKING’,_],function (t) { t[1]++ });
alt([

[’SENSORA’,_,_],
[’SESNORB’,_],
[’EVENT’],
],function (tuple) {

if (tuple && tuple[0]==’EVENT’) {..}
else ..

});

alt
function(pattern [],callback:function,all?:boolean,tmo?:number)Input operation with multiple search patterns that can have different typeinterfaces and arities. The first tuple matching one of the pattern is con-sumed and passed to the callback function. If there are multiple tuplesmatching a specific pattern and the flag is set than all matching tuples areconsumed and returned.

collect1,2,3

function (to:path,pattern) → numberThe collect operation moves tuples from this source TS that match templatepattern into destination TS specified by path to (a node destination).
copyto1,2,3

function (to:path,pattern) → numberCopies all matching tuples form this source TS to a remote destination TSspecified by path to (a node destination).
evaluate

function (pattern,callback:function (tuple)) → tupleAccess an evaluator tuple created by a listen operation. The evaluatorevaluates the given pattern to a tuple and passes the tuple to the callbackfunction.
exists

function (pattern) → booleanCheck if a tuple matches the given patterns.
inp

function (pattern,callback:function,all?:boolean,tmo?:number)Consumes a tuple matching the given pattern that is passed to the callbackfunction. If there are multiple tuples matching a specific pattern and the
all flag is set than all matching tuples (array) are consumed and returned.If there is no matching tuple and tmo is zero (immediate reply) or positive(timeout) than the callback handler is called with a none value argument.

Agent Input-Ouput System (AIOS) 15

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

listen
function (pattern,callback:function (pattern) → tuple)Install a tuple evaluator (active tuple) that can be accessed by the evaluateoepration.

out
function (tuple)Store a tuple in the data base.

mark
function (tuple,tmo:number)Store a tuple with a limited lifetime in the data base.

rd
function (pattern,callback:function,all?:boolean,tmo?:number)Read a tuple matching the given pattern that is passed to the callback func-tion. If there are multiple tuples matching a specific pattern and the all flagis set than all matching tuples (array) are read. If there is no matching tu-ple and tmo is zero (immediate reply) or positive (timeout) than the callbackhandler is called with a none value argument.

rm
function (pattern,all?:boolean)Remove a tuple or if the all flag is set all matching tuples from the database.

store1,2,3

function (to:path,tuple) → numberStores a tuple in a remote TS specified by path to (a node destination).
ts

function (pattern,callback:function(tuple)→tuple)Atomic and non-blocking test-and-set operation that can be used to modifya tuple in place found based on the provided pattern.
try_alt, try_inp, try_rd

function (tmo:number,..)Try operation to perform an alternation, input, or read operation with agiven timeout.

4.4.1. Active Tuples
Passive tuples are produced via the out operation and consumed via the rd and
inp operations. Among passive tuples, there are active tuples that are evalu-ated by a consumer and passed back to the original producer (bidirectionaltuple exchange) by using the listen and evaluate operations.
Definition 1. (Active Tuple Template)

Agent Input-Ouput System (AIOS) 16

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

listen(pattern, function (tuple) {
Modification of tuple : Replace formal parameters with actual
return tuple′

})
evaluate(pattern, function (tuple) {

Process evaluated tuple
})

4.5. AgentJS API: Signals and Signal Handler
Signals are used as a low-level inter-agent communication. In contrast to tu-ple, signals can be send directly to specific agents. Although there are remotetuple space operations, signals should be used for remote agent communica-tion. Signals can carry an argument (data). The delivery of signals is only reli-able if the source and destination agents are processed on the same platformnode. If the destination agent is processed on a remote platform the signalsare delivered as messages to the destination node along the travel path of thedestination agent.
There is no agent localization, and only agent traces are used to deliver a sig-nal to a remote agent, i.e., each node remembers the direction/link an agentused to migrate to another node. Therefore, remote signals can only be sendto agents that were previously processed on the node of the source agent! Toenable back propagation of signals, each node remembers the direction/link ofincoming signals and its source agent, too. The entries of these trace cacheshave a timeout and are removed automatically. Each time a signal is propa-gated along the trace path of an agent, the cache entries of all path nodes arerefreshed.ăAfter a timeout of a trace cache entry, signals cannot be deliveredto an agent along a path using this node!
A signal can be received by an agent by installing a signal handler in the this.onsection of the agent class.
The destination agent is specified by the agent identifier. Usually agent iden-tifiers should not made be public for security reasons (An agent at least withprivilege level 1 can control another agent on the same node if it knows itsagent identifier). Hence, signals are often used between parent-child agents.Each child knows the agent identifier of its parent, and vice versa.
Signals should carry only simple arguments. Objects may not contain cyclic ref-erences. Complex data structures should only be exchanged between agentsby using the tuple space.
type aid = string
type range = hops:number|region:{dx:number,dy:number,..}

Agent Input-Ouput System (AIOS) 17

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

this.child=none;
this.act = {

a1: function () {
this.child=fork({child:none});

}
a2: function () {

Raising of signal
if (this.child) send(this.child,’PARENT’,me());

}
}
Installation of Signal Handler
this.on : {

’PARENT’ : function (arg) {
log(’Got signal from my parent ’+arg);

}, ..
}

send1,2,3

function (to:aid,sig:string|number,arg?:*)Send a signal @sig (string or number) to an agent with identification string
@to with an optional argument @arg.

broadcast1,2,3

fucntion (class:string,range,@sig,@arg?)Broadcasts a signal to multiple agents of class @class with the specifiedrange.
sendto1,2,3

function (to:dir,sig:string|number,arg?:*)Send a signal @sig (string or number) to a remote node specified by @towith an optional argument @arg. If there is an agent on the remote nodehandling the specific signal it will be passed to the listening agent.
sleep

function (tmo:number)Suspend agent for a specific time. If @tmo is zero, the agent is suspendeduntil it will be woken up by another agent using the wakeup operation.
wakeup

function (aid?:string)Wake up a sleeping agent. Can be called from within an signal handler. If
@aid is undefined, the agent calling wakeup will be woken up (if suspended).

timer.add
function (tmo:number,sig:string,arg:*,repeat:boolean) → stringAdd and start a new timer that raises the signal sig after timeout.

Agent Input-Ouput System (AIOS) 18

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

timer.delete
‘function (sig:string)Deletes a timer referenced by the identifier returned from timer.add.

4.6. AgentJS API: Agent Control
Agents can be instantiated from an agentăclass template (previously loadedinto the platform) by using the create operation with parameter initialization.Agent class parameters must be passed immediately to agent body variables.They are not accessible during run-time!The agent class ac must be loadedpreviously as an agent class template and is provided by the platform. Alterna-tively, the agent class can be a sub-class of the current agent.
Furthermore, agents can be forked from the current agent process inheritingthe entire data and control state including the current agent behaviour (activ-ities, transitions, ..). Specific body variables of the forked agent can be over-ridden by the attributes of the settings object passed on the fork call. Forkingdiscards all current scheduling blocks, in contrast to migration!
A newly created agent is identified by a (node) unique identifier string (com-monly 8 characters) that is returned by the create and fork operations.
At least privilege level 1 is required to use these operations.
create1,2,3

function (ac:string,[arg1,arg2,..],level?:number) → aid
function (ac:string,{arg1:*,arg2:*,..},level?:number) → aidCreates a new agent from agent class ac with the given set of arguments.Agent class arguments are passed to agent class parameters during thecreation or forking process. Arguments can either be passed in an arraymatching parameters in the order they are defined, or by using an argu-ment objectăwith arbitrary parameter order. Optionally the privilege levelof the new agent can be specified, otherwise the new agent inherits the levelof the creating agent. The highest level is limited to the level of the creatingagent! The initial activity executed by the newly created agent is specifiedby the constructor function in the next attribute.

fork1,2,3

function (parameters:{var1:*,var2:*,..},level?:number) → aidForks a copy of the current agent process inheriting the entire data and con-trol state of the parent agent. The new child agent can reference its parentagent by the this.parent attribute or by using the myParent function. Thechild agent body variables var1,var2,.. passed by the parameters objectare overridden on forking with the given values. Note that agent class pa-rameters cannot be accessed after the creation of an aent. The next activity

Agent Input-Ouput System (AIOS) 19

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

executed after the fork is either computed by the current transition entry orby a next variable override passed with parameter object.
Examples
id = create(’explorer’,{dir:DIR.NORTH,radius:1});
child = fork({x:10,y:20});
kill(child);

Among the creation and destruction of agents, the agent behaviour can bemodified by agents by adding, deleting, or updating of transitions and activities(modification of the ATG). Only whole activities can only be changed and notcode parts. There are two objects accessible by agents providing modificationoperations: act and trans. ATG transformations can be temporarily, e.g., usedto create child agents with different or reduced behaviour.
act.add

function (act:string,code:function)Adds a new activity @act with the given code to the current agent object.
act.delete

function (act:string)Deletes activity @act from the current agent object.
act.update

function (act:string,code:function)Updates code of activity @act of the current agent object.
trans.add

function (trans0:string,code:function|string)Adds a new transition starting from activity @trans0 with the given code tothe current agent object.
trans.delete

function (trans0:string)Deletes a transition from activity @trans0 from the current agent object.
trans.update

function (trans0:string,code:function|string)Updates code of transition starting from activity @trans0 of the currentagent object.
Examples
this.act = {

a1: function () {..},
a2: function () {

act.delete(a1); trans.delete(a1);

Agent Input-Ouput System (AIOS) 20

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

act.add(’b1’,function () { this.sensor=[]; .. });
trans.update(a2,function () { return this.sensor.length>0?b1:a3 });

},
a3: ..
..

};
this.trans = {

a1: a2,
a2: a3,
a3: ..

}

4.7. AgentJS API: Mobility
Agent processes can migrate to another node (either physical or logical) bytransferring its current control and data snapshot via a message over a trans-port channel. The destination (specified by the transport channel) is selectedby a directionăDIR. If the moveto operation is executed at the end of an activ-ity or the current scheduling block is empty after migration, the next activity iscomputed after migration on the new JAM node.
If a migration to a specific host or in a specific direction is not possible, a MOVEexception is thrown.
Types
enum DIR = {

NORTH , SOUTH , WEST , EAST ,
LEFT , RIGHT , UP , DOWN,
ORIGIN ,
NW , NE , SW , SE ,
PATH (path:string) -> {tag=’DIR.PATH’,path:string} ,
IP (ip:string) -> {tag=’DIR.IP’,ip:string} ,
NODE (node:string) -> {tag=’DIR.NODE’,node:string} ,
CAP (cap:string|capability) -> {tag=’DIR.CAP’,cap:string|capability}

} : dir

moveto
function (to:dir)Migrates current agent to a new node specified by the destination @to.

opposite
function (dir) → dirReturns the opposite (back) direction (if any) of the given direction. E.g.,opposite of NORTH is SOUTH. In the case of IP links and migration the opposite

Agent Input-Ouput System (AIOS) 21

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

operation can return the IP address or the node name of the last node, i.e.,
opposite(DIR.IP()) and opposite(DIR.NODE()), respectively.

link
function (dir) → boolean|string|[]Test a link direction. Should be used prior to migration (migration with notavailable link direction causes an exception). In the case of multi-cast links(e.g., IP), a list of connected/reachable IPs (routes, using pattern IP(’*’)) orNodes (using pattern IP(’%’)) is returned.

Examples
Activity in agent class template
move : function () {

if (this.verbose>0) log(’Move -> ’+this.dir);
if (!this.goback) this.backdir=opposite(this.dir);
switch (this.dir) {

case DIR.NORTH: this.delta.y–; break;
case DIR.SOUTH: this.delta.y++; break;
case DIR.WEST: this.delta.x–; break;
case DIR.EAST: this.delta.x++; break;

}
if (this.dir!=DIR.ORIGIN && link(this.dir)) {

this.hop++;
moveto(this.dir);

}
}

The possible migration directions depend on the network ports avail-able on the agent’s current node and established links between nodes.IP (UDP/HTTP) links can be established between generic not directional(multicast) IP ports (DIR.IP("ip:ipport")) or between directional (unicast)ports, e.g., DIR.NORTH("ip:ipport")), commonly connected to a South
DIR.SOUTH("ip:ipport")) port on the remote endpoint. Generic IP ports canspawn arbitrary mesh grids. Alternatively, a destination node can be specified,i.e., DIR.NODE(nodeid).
After an agent migration, the agent can retrieve its backpropagation direction,i.e., last node identifier or IP address by using the opposite(DIR.NODE()) and
opposite(DIR.IP()) operations, respectively.
Example 1. (Agent forward and backward migration between two nodes)

function mi(dest){
this.src=null;
this.dest=dest;

Agent Input-Ouput System (AIOS) 22

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

this.act={
init:function () {
log(’Starting on ’+myNode())},

goto: function () {
log(’Going to ’+DIR.print(this.dest));
if (link(this.dest)) moveto(this.dest); else log(’No route’)},

goback: function () {
this.src=opposite(DIR.NODE());
log(’Going back to ’+DIR.print(this.src)); moveto(this.src)},

end: function () {
log(’End’); kill() }

}
this.trans={

init:goto, goto:goback, goback:end
}
this.next=init

}

4.8. AgentJS API: Ad-hoc Connectivity
connectTo3

function connectTo(dir:dir,@options)Connect this node to another node using a virtual or physical channel link.

4.9. AgentJS API: Scheduling Blocks
There are many operations that can block (suspend) the agent processing. Butthe JavaScript programming model does not support code blocking. For thisreason, blocking AgentJS/AIOS statement (e.g., sleep, inp, ..) have to be placedat the end of an activity that is the only scheduling point. And there may beonly one blocking activity. To support scheduling of a sequence of blockingstatements, a scheduling block can be defined within an agent activity (but notwithin a transition that may not block).
B

function(block:function [])Defines a scheduling block that is executed after the current activity definingthe block has terminated. Each element of the function array is treated asan anonymous (sub-)activity and may contain a blocking statement.
I

function (object,next:function,block: function [],finalize:function)

Agent Input-Ouput System (AIOS) 23

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Iterates over object or array and applies the function block to each element.
L

function (init:function,cond:function,next:function,block: function]})Loop block iteration with initialization, conditional, and next computationfunction.

4.10. AgentJS API: SQL Operations∗
Level 3 (stationary) agents can access or create SQLite data bases. Requires anative sqlite3 plug-in (embedded already in jx+, node.js requires loading of anexternal native module).
db.Database

constructor (filepath:string,options?:{mode:"r"|"r+"|"w+"}) -> sqldbCreates a new data base or opens an existing from a file. A volatile database can be created in memory by specifying a :memory: file path.
createMatrix

method (matname:string, header:string|number|boolean [], callback?:function)
-> booleanCreates a new number matrix in the data base. The header argument pro-vides the type interface for all rows.

createTable
method (tblname:string,header:{},callback?:function) -> booleanCreates a new table in the data base

init
Initialize the SQL data base and start server.

insertMatrix
method (mat:string,row:[],callback?:function) -> booleanInsert a new row in an already created matrix

insertTable
method (tbl:string,row:[]|{},callback?:function) -> booleanInsert a new row in an already created table

readMatrix
method (mat:string,callback?:function) -> [][]|noneRead entire matrix

readTable
method (tbl:string,callback?:function) -> {}[]|noneRead entire table

JAM API 24

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

5. JAM API
The JAM platform is implemented as a library that can be embedded in anyhost application program. The application programs jamsh and jamapp providea GUI and shell to the JAM library.

6. JAMLIB
6.1. Synopsis
use jam/aios as AI
use jam/mobi as MO
use jam/chan as CH
use jam/node as NO
use jam/ts as TS

class jam = {
node: object,
world: object,
run: boolean,
options: object,

syntax: object {
find: function (@root,@typ,@name),
location: function (elem,short) -> string,
name: function (elem) -> string,
offset: number

},
addClass: method (@templates),
addNode: method (nodeDesc)

with nodeDesc: {x,y,id},
addNodes: method (@nodes) -> AI.id [],
analyze: method (@ac,@options) -> {report:string,interface},
analyzeSyntax: private method (Esprima.syntax,options:object),
connectNodes: method (@connections),
connectTo: method (to:string "<dir->url>|<url>",nodeid?:AI.id),
connected: method (dir:MO.dir,nodeid?:AI.id) ->

none|boolean|string|string [],
compileClass: method (name:string,constructor:function,@options),
createAgent: method (ac:string,args:[]|{},

level:number,className:string) -> AI.id,
createAgentOn: method (nodeid:AI.id,ac:string,args:[]|{},

JAMLIB 25

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

level:number,className:string) -> AI.id,
createPort: method (dir:MO.dir,@options,@nodeid) -> CH.channel,
disconnect: method (to:MO.dir,nodeid?:AI.id),
emit: method(@event,@arg1,..),
// Execute an agent snapshot delivered in JSON+ text format
execute: method (data:string,file?:string),
executeOn: method (data:string,node:number|string,file?:string),
extend: method (level:number|number[],

name:string,code:function,
argn?:number|number []),

getNode: method (string|number|object) -> NO.node|undefeined,
getNodeName: method (@nodeNumberorPosition) -> string,
getWorldName : method () -> string,
init: method (callback),
inp: method (TS.pattern) -> TS.tuple|none,
kill: method (AI.id),
migrate: method (@data),
on: method (event:string,handler:function),
open: method (file:string,@options),
out: method (TS.tuple),
rd: method (TS.pattern) -> TS.tuple,
readClass: method (file:string,@options),
register: function (node:NO.node),
removeNode: method (AI.id),
rm: method (TS.pattern),
saveSnapshot: method (aid:string,file?:string,kill?:boolean) ->

string|undefined,
saveSnapshotOn: method (aid:string,node:number|string,

file?:string,kill?:boolean) ->
string|undefined,

schedule: method (),
setCurrentNode: method (number),
signal: method (to:AI.id,sig:string,arg:*,@broadcast?),
start: method (),
stats: method (@kind) -> object

with @kind={’process’},
step: method (steps:number,callback:function),
stop: method (),
time: method () -> number,
ts: method (pat:TS.pattern,callback:function) -> TS.pattern,
version: method () -> string

}

Jam: constructor (options) -> jam
with options : {

connections?,

JAMLIB 26

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

print?:function (string) is agent and control message output function,
print2?:function (string) is agent message only output function,
provider:function (TS.pattern) -> TS.tuple|none,
consumer:function (TS.tuple) -> boolean,
@classes?,
id?:AI.id is node identifier,
verbose?:number,
TMO?:number is default cache timeout,
nolimits?:boolean,
nowatch?:boolean,
checkpoint?:boolean,
log?:{class?:boolean,node?,agent?,parent?,host?,time?,Time?,pid?},

}
and connections : {

$kind : {
send:function(data:string|buffer,dest:MO.DIR) -> number,
link?:function (MO.DIR) -> boolean

} , ..
}
and $kind = {north,south,west,east,nw,sw,ne,se,up,down,path,dos,ip}

6.2. Description
The JAM library implements JAM and provides an API that can be use dby anyhost application.

7. Using JAM
7.1. JAM Library
JAM is provided as a library that can be embedded in any host application pro-gram written entirely in JavaScript. The library jamlib provides a JAM worldconstructor function Jam: function (@options) → jam. A JAM instance con-sists of the Agent Input and Output System (AIOS), a world with at least oneJAM node, and an agent compiler and analyzer. Multiple virtual nodes can beconnected in this world providing an artificial JAM network. Please note thatall virtual nodes are executed in one host process and sharing the same AIOSscheduler but having different tuple and agent spaces. Additionally, a JAM nodecan be connected to other physically separated nodes via IP links. To utilizemulti-processor platforms, a physical cluster of nodes can be created.

Using JAM 27

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

7.2. Creating a simple JAM Instance
Using the JAM library (jamlib) it is easy to create a JAM instance. The followingJavaScript code can be started by any command line JS VM, e.g., node.js or jxcore.Do not forget to initialize and start the JAM instance.
API
constructor Jam(@options) → jam;
jam.init: method ();
jam.start: method ();

Example
var JamLib = require(’./jamlib’);
var JAM = JamLib.Jam({

connections:{
ip:{

from:’localhost:10001’, // Create IP-AMP port
proto:’udp’

}
},
print:function (msg) {console.log(msg)},
verbose:JamLib.environment.verbose||1,

});
JAM.init();
JAM.start();

After the JAM instance was started it is ready to process agents. Since an IP-AMP (Agent Management Port) communication link was created (listening on IPport 10001), external programs can connect and can access the JAM, e.g., usingthe jamp utility capable to send agent constructor functions (class templates)and to send agent processes ready to start.
An example is shown below. The helloworld.js file contains the constructorfunction function(options){} definition for the agent class helloworld. TheJAM node has an AMP-IP listening on port 10001 (on localhost). A full URL canbe specified, too. The constructor function argument(s) can be given in curledparentheses.
jamp connect 10001 compile helloworld.js \

create helloworld {verbose:1} execute
jamp connect 1.1.2.3:10001 compile helloworld.js \

create helloworld {verbose:1} execute

Using JAM 28

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

7.3. Adding and Importing Agent Class Templates
An agent class template can be imported (analyzed and compiled) from a fileby using the JamLib readClass(filename,options) method. The file to beimported can contain one function constructor only (without any module ex-port statements) as defined above or a set of agent class constructor functionsexported by module.exports={ac1:function,ac2:function,..}. An embed-ded agent class constructor function can be added by using the compileClass(
classname:string, function, verbose:number) method.
API
constructor Jam(@options) → jam;
jam.compileClass: method (name:string,function,verbose?:number);
jam.readClass: method (file:string,@options);

Example
var JamLib = require(’./jamlib’);
var JAM = JamLib.Jam({..});
JAM.init();
JAM.start();
// Import from file
JAM.readClass(’agent.js’,{verbose:1});
// Embedded constructor function
function ac(options) {

this.xx=..;
this.act={..};
this,trans={..};
this.next=xx;

}
JAM.compileClass(’My Class Name’,ac,1);

7.4. Creating Agents programmatically
An agent can be instantiated from an agent constructor function usingthe createAgent(function|string,arguments:[],level) method either di-rectly by providing the constructor function, agent object arguments, and theinitial agent AIOS level, or by referencing an already compiled agent class.
var JamLib = require(’./jamlib’);
var JAM = JamLib.Jam({..});
JAM.init();
JAM.start();
// Import class ac from file

Using JAM 29

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

JAM.readClass(’agent.js’,{verbose:1});
// Embedded constructor function
function ac(options) {

this.xx=options.xx;
this.act={..};
this,trans={..};
this.next=xx;

}
var ag1 = JAM.createAgent(’ac’,{xx:1},2);
var ag2 = JAM.createAgent(ac,{xx:2},1);

7.5. Connecting JAM nodes
Usually JAM nodes are organized in cell- or mesh-like network structures. TwoJAM nodes can be connected P2P using directional ports, e.g., NORTH, SOUTH,
WEST, or P2N using the IP port IP.
Node 1
var JamLib = require(’./jamlib’);
// JAM Node 1
var JAM1 = JamLib.Jam({

connections:{
north:{

from:’hosta:10001’, // Create IP-AMP port
proto:’udp’

}
} ..

Node 2
var JamLib = require(’./jamlib’);
// JAM Node 2, executed in a different process
var JAM2 = JamLib.Jam({

connections:{
south:{

from:’hostb:10002’, // Create IP-AMP port
proto:’udp’

}
} ..

..
JAM2.connectTo(’south->hosta:10001’);

Using JAM 30

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

7.6. Extending AIOS of JAM
The AIOS can be extended easily with user supplied functions.
API
constructor Jam(@options) → jam;
jam.extend: method (level:number|number[],name:string,

function,argn?:number|number []),

Example
var JamLib = require(’./jamlib’);
// Create the JAM instance
var JAM = JamLib.Jam({ .. });
// Extend AIOS
function joke() {

return "He said: Onions are the only food that can make you cry."+
"So I threw a coconut in his face."

}
// Extend only level 1/2 agents
JAM.extend([1,2],’joke’,joke);

function someagent() {
this.act = {

lough: function () { log(joke()) }
}

}

7.7. Extended IO of JAM: Adding tuple providers
Agents can read (consume) tuples from the tuple space provided by each JAMnode that are stored by other agents (or the consuming agent). To extend thetuple space, the host application can provide tuples on request and can con-sume tuples stired by agents. This extends the inter-agent communication tothe host application IO system. The provider and consumer functions must bepassed by the options object on JAM instantiation.
API
use jam/ts as TS
constructor Jam({

provider:function(TS.pattern) → TS.tuple|none,
consumer:function(TS.tuple) → boolean

}) → jam;

Using JAM 31

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Example
function provider(pat) {

switch (pat.length) {
case 2:

switch (pat[0]) {
case ’SENSOR2’:

return [pat[0],(256*rnd())|0];
}
break;

}
}

function consumer(tuple) {
switch (tuple.length) {

case 3:
switch (tuple[0]) {

case ’ADC’:
console.log(’Host application got ’+tuple);
return true;

}
break;

}
return false;

}
var myJam = JamLib.Jam({

consumer:consumer,
print:console.log,
provider:provider,
verbose:0,

});

8. JAMSH
8.1. Synopsis
JAMH: JAM Shell
Shell Commands
The following shell commands are avaiable:
add({x,y})

Add a new logical (virtual) node
broker(ip)

JAMSH 32

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Start a SIP UDP broker server
connect({x,y},{x,y})

Connect two logical nodes
connected(to:dir)

Check connection between two nodes
compile(function)

Compile an agent class constructor function
create(ac:string,args:*[]|{},level?:number,node?)

Create an agent from class @ac with given arguments @args and @level
env

Shell environment including command line arguments a:v
exit

Exit shell
extend(level:number|number[],name:string,function,argn?:number|number[])

Extend AIOS

http(ip,dir,index?)
Create and start a HTTP file server

inp(pattern:[],all:boolean)
Read and remove (a) tuple(s) from the tuple space

kill(id:string)
Kill an agent (id="*": kill all)

link(to:dir)
Connect two phyiscal nodes

lookup(pattern:string,callback:function (string [])
Ask broker for registered nodes

log(msg)
Agent logger function

open(file:string)
Open an agent class file

out(tuple:[])
Store a tuple in the tuple space

port(dir,options,node)
Create a new physical communication port

rd(pattern:[],all:boolean)
Read (a) tuple(s) from the tuple space

rm(pattern:[],all:boolean)
Remove (a) tuple(s) from the tuple space

script(file:string)
Load and execute a jam shell script

setlog(<flag>,<on>)
Enable/disable logging attributes

signal(to:aid,sig:string|number,arg?:*)
Send a signal to specifid agent

start()

JAMSH 33

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

start JAM
stats(kind:"process"|"node"|"vm")

Return statistics
stop()

stop JAM
ts(pattern:[],callback:function(tuple)->tuple)

Update a tuple in the space (atomic action) - non-blocking
time()

print AIOS time
unlink(to:dir)

Disconnect remote endpoint
verbose(level:number)

Set verbosity level

8.2. Description
The JAM Shell jamsh is a command line interpreter that provides direct accessto the JAM libraray jamlib. Commands can be executed either from commandline (of the shell) or by a script.

8.3. Networking
Networking consists of the creation of ports and links between ports (and JAMnodes). Commonly multicast IP ports are used in the Internet domain. A mul-ticast IP port can conenct with an arbitrary number of IP ports of remote JAMnodes. All ports provide an Agent Management Port (AMP) interface used totransfer agent code, signals, tuples, and control messages between JAM nodes.In the Internet or Intranet domain there are three different communciationprotocols that can be used to transport AMP messages: UDP, TCP, and HTTP.Different IP ports using different protocols can coexist on a JAM node. All IPports are handled by an internal router.
Note: An IP port can be defined by using the DIR.IP("ip:port") directionaltype. Other port directions like DIR.NORTH("ip:port") can be used, too. Butthese port directions support unicast ports only.

8.3.1. UDP Unicast ports and links
port(DIR.IP(ip:number|string="<ip>:<port>"),

{proto:’udp’,multicast:false,verbose:1});
link(DIR.IP(ip:number|string="<ip>:<port>"));

JAMSH 34

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

8.3.2. UDP Multicast ports and links
port(DIR.IP(ip:number|string="<ip>:<port>"),

{proto:’udp’,verbose:1});
link(DIR.IP(ip:number|string="<ip>:<port>"));

8.3.3. UDP Multicast ports using broker service
Client Side
port(DIR.IP("*"),{proto:’udp’,broker:"<ip>:<port>",

name:’/domainX/’+name("node"),
multicast:true,verbose:1});

link(DIR.IP("/domainX/B"));
lookup(DIR.PATH(’/domainX/*’),function (result) {

log(’lookup: ’+result)
});

Broker Server
broker("<ip>:<port>");

8.4. Example
// Agent Class Construtor
function fib(args) {

this.todo = args.val;
this.output = [];
this.f = function(n) {

return n < 2 ? n : this.f(n-2) + this.f(n-1)
}

this.act = {
calculate: function() {

var n = head(this.todo)
this.todo = filter(this.todo, function(elem) { return elem != n })
var result = this.f(n)
this.output.push(result)

},
print: function() {

var next = head(this.output)
this.output = filter(this.output, function(elem) { return elem != next })
log(next)

JAMSH 35

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

}
}

this.trans = {
calculate: function() {

return empty(this.todo) ? print : calculate
},

print: function() {
if(empty(this.output)) {

log(’Killing agent’)
kill()

}
return print

}
}

this.next = calculate
}
// Compile agent class and add it to the world library
compile(fib)
// Start JAM scheduler loop
start()
// Create an agent from already compiled class
create(’fib’, {val: [10, 5]})

9. JAM APP
The JAM APP is a JAM node with a GUI (terminal based). It can be configured byusers and automates the deplyoment of JAM, especially on mobile devices.
The GUI is organized in pages similar to a mobile App layout. The navigationcan be done by using the top button row that provides left and right page but-tons.

9.1. GUI
The start screen provides the main menu:

JAM APP 36

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Setup
Upper right button selects the entry page of the setup menu. The first pageconfigures JAM links. There are up to four IP Point-to-Network (P2N) linksthat can be established to other JAM nodes and four “directional” P2P links(Direction North, South, West , East). Each links consists of a remote end-point IP address and IP port, an optional security key, and an optional localendpoint IP port. Usually all four IP links share the same local IP endpoint. Alink can be established via the unreliable UDP or by a (less efficient) reliableHTTP protocol.

JAM APP 37

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Control
The control menu provides actions for starting and stopping the JAM. Fur-thermore, an intial network connection to other JAM nodes can be started.The parameters for network connectivity is defined in the setup menu sec-tion. The Reset button resets the entire JAM instance that is created on thefirst start action by using the Start button. A reset automatically discon-nects the JAM from any other JAM node.

JAM
Agents

Logging

9.2. Options
The JAM App can be started from command line with the following options.
style:style

Select a different GUI (color) styles: black|invert|simple

mode:server
Starts the App in server mode (i.e., command line mode) without a GUI.

config:file
Loads an alternative configuration file.

9.3. Configuration File
The default configuration file is jam.app.config. The configuration file con-tains JAM and GUI related entries as shown below. Note that if node and wolrdnames are specified in the configuration file then they are used permanently.To get a new random node-world name pair the nodename and worldname en-tries have to be set to value null. The new names are saved in the configura-tion file automatically.
{

"agents": {
"level": 1

},
"domain": "default",
"expert": false,
"keyboard": false,

JAM APP 38

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

"public": {
"IP(1)": {

"address": "134.102.219.1",
"port": 10002,
"local": "10001",
"enable": true

}
},
"nodename": "hamuxujo",
"links": [

"IP(1)",
"IP(2)",
"IP(3)",
"IP(4)",
"NORTH",
"SOUTH",
"WEST",
"EAST"

],
"log": {

"node": false,
"agent": true,
"class": false,
"time": false

},
"logJam": {

"world": false,
"node": false,
"pid": false,
"time": false

},
"proto": "udp",
"script": "load(’node.js’);\ncreate(’node’,{repeat:10});\n",
"security": false,
"sensors": true,
"simple": false,
"verbose": 0,
"worldname": "HAMUXUJO"

}

9.4. Node Management Agent
A JAM APP can connect automatically to specified destination nodes. But con-nections can be unreliable and being unlinked after multiple communication

JAM APP 39

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

failures. There is no reconnect feature implemented in JAM. To ensure perma-nent connectivity (a link) to another node, a nodemanagement agent should bestarted that monitors pre-configured links and executes an initial and succeed-ing connect requests. Furthermore, a node management agent can performadditional repeating tasks, like collecting of data from tuple spaces and storingdata in file databases (SQL) or vice versa.
A node management agent must be started with privilege level 3to enable system access operation (connect, file database access,..). This can be done in the script entry of the configuration file:
load(’node.js’); create(’node’,{..},3). A node management agentcan fail, too. To ensure permanent presence of this management agent,an agent monitor can be used to start and monitor an agent. If the agentterminates (e.g., due to a failure), a new instance is started automatically. In theconfiguration file use instead: load(’node.js’); monitor(’node’,{..},3)

Example
function node(options) {

this.text=options.text;
this.repeat=options.repeat||1;
this.time=1000;
this.links=[];
this.connects=[];
this.sensors={};
this.config={};
this.pendingjobs=[];
this.verbose=1;

this.act={
init: function () {

var conn;
log(’Starting. I am from class ’+myClass());
if (privilege() == 3) {

this.config=config();
if (this.verbose) log(this.config);
iter(this.config.public,function (addr,ch) {

if (addr.enable && addr.address && addr.port) {
conn={address:addr.address,port:addr.port,time:time(),state:false};
this.connects.push(conn);

}
});
log(’Connects: ’,this.connects);

}
try_rd(0,[’SENSORS’,_],function (t) {

if (t) log(’Sensors available: ’,t[1])
});

JAM APP 40

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

},
percept: function () {

var curlinks;
log(’Percepting ..’);
// Get all currently linked nodes
curlinks=link(DIR.IP(’*’));
log(curlinks);
try_rd(0,[’SENSOR’,’cpu’,_],function (t) {

log(t);
if (t) this.sensors.cpu=t[2];

});
},
service: function () {

},
wait: function () { log(’Sleeping ..’); sleep(this.time) },
end: function () { log(’Terminate!’); kill() }

};
this.trans={

init:percept,
percept:function () { return this.pendingjobs.length?service:wait },
service:wait,
wait:function () { this.repeat–; return this.repeat?percept:end }

};
this.next=init;

}

10. Simulation
The JAM can be used for agent-based simulation and simulation of MAS worlds,too. The Simulation Environment for JAM (SEJAM) adds visualization and con-trol layers on the top of the JAM. This enables the simulation of virtual worldsconsisting of multiple logical JAM nodes connected, e.g., in mesh-like networksby virtual channels.
Due to the deployment of a real JAM inside the simulator, the simulator can beconnected to real world networks enabling hardware-in-the-loop simulations.
There are two simulators available:
SEJAM

SEJAM provides a simple terminal-based GUI and can be executed on anyplatform.

Simulation 41

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

SEJAM2
SEJAM2 provides a complex GUI with additional analysis and visualizationtools based on node webkit (node + chromium browser).

The SEJAM2 simulator window consists of the following sub-windows:
Main Menu and Control Bar

The main control bar provides buttons for the following operations: Open

Simulation 42

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

(a simulation model); Reload (a model); Save (a model); Wizard (for a newmodel, not implemented yet); Code Editor (for simulation model and includedfiles); Show/Hide Inspector; Show/Hide Information Window; Reports (not imple-mented yet); Show/Hide MAS World; Show/Hide Simulation Control; Show/HidePlot Window; Show/Hide Configuration Menu; Auto Layout; Lock/Unlock positionof sub-windows; Show/Hide Physical Simulation World.

MAS World
The visualization of the MAS and JAMworld. Nodes, links, and agents can beselected to display information in the inspector window about the selectedobject. The window provides the following buttons: Erase (visualization); Re-draw; Zoom in; Zoom out; Zoom selection; Zoom fit in window; Select multipleobjects in a region for that information is shown in the inspector; Show/Hideobject flags (names); Print world.

Simulation Control
The simulation can be controlled and monitored by using the control but-tons of the simulation control window. The second row of the window pro-vides basic simulation settings and monitors: The number of simulationsteps executed in step mode, the delay between two simulation steps, thecurrent simulation time (in step or millisecond units), the current simula-tion step, the total number of agents existing in the simulation world, andthe number of nodes. The button bar provides the following operations:Creation and destruction of the simulation world; Start step mode; Start runmode; Stop simulation; Configuration setup; Enable/disable Recording; Createand show a report.

Simulation 43

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

Inspector
The inspector can be used to explore different objects: Agents; Nodes;Links. Objects selected in the simulation world are displayed automati-cally. The following buttons are available: Erase inspector window; Displaycurrent simulation model; Display all current GUI objects in the simulationworld; Lock/Unlock inspector.

Physical Simualation World
This window provides a visualization of a physical world simulated with themulti body physics simulator CANNON and the physical simulation controlbar. Usually phyiscal simulations are controlled by the MAS simulation (e.g.,the world agent). A physical simulation world consists of a scene. Within thescene window there is a another sub-menu that can be used to configurethe physical simulation and to select scenes.

The button bar provides the following operations: Create world; Delete world;Start simulation; Step simulation; Stop simulation; Show physical model in inspec-tor; Print current scene; Make a report.

Simulation 44

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

10.1. Physical Simulation
The physical world is defined in accordance to the CANNON scene modelling.There are masses and connections between masses. The following exampledefines a plate consisting of multiple rows, columns, and layers, which are laiddown on two pillars. The configuration of the phyiscal model is defined in themain simulation model that is passed by the settings parameter to this sceneconstructor function. The world paramater provides access of the GUI andCANNON object.

Example Model
/** Defines a physical simulation scene
* used by the CANNON multi-body physics simulator.
* Must return the physical objects that can be accessed
* by SEJAM agents.
*
*/
/*
** X <––+ Z External coordinates
** |
** v
** Y
**
**
** x <–-+ z Internal coordinates

Simulation 45

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

** |
** v
** y
*/

function (world,settings) {
var CANNON=world.CANNON,

GUI=world.GUI,i,j,
mass = (settings && settings.mass)?settings.mass:1,
X=settings.model.world.meshgrid.cols,
Y=settings.model.world.meshgrid.rows,
Z=settings.model.world.meshgrid.levels,
Height=20,
damping=settings.model.parameter.damping||3,
stiffness=settings.stiffness||settings.model.parameter.stiffness||50,
Mass=200,
MC=5,
holes=settings.model.parameter.holes ||[];
// hole=none;

function contains (vl,v) {
for(var i in vl) if (equal(vl[i],v)) return true;
return false;

}
function matrix(n,m,k) {

var x,y,z,mat;
mat=new Array(n);
for(x=0;x<n;x++) {

mat[x]=new Array(m);
for(y=0;y<m;y++)

mat[x][y]=new Array(k);
}
return mat;

}

var constraints = [];
var bodies = [];
var springs = [];
var masses = matrix(X,Y,Z);
var loadings=[];

world.gravity.set(0,0,-10);
world.camera.position.set(150,130,70);
world.camera.up.set(0,0,1);
world.camera.fov=5.0;

Simulation 46

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

var groundMaterial = new CANNON.Material("groundMaterial");

// Ground
var groundShape = new CANNON.Plane();
groundShape.color = 0x00ff00;
var ground = new CANNON.Body({ mass: 0, material: groundMaterial });
ground.addShape(groundShape);
ground.position.z = 0;
world.addBody(ground);
GUI.addVisual(ground);

/*
var fixedBody = new CANNON.Body({mass: 0,

material: groundMaterial });
var fixedPlane = new CANNON.Plane();
fixedPlane.color = 0x00ffff;
fixedBody.addShape(fixedPlane);
var rot = new CANNON.Vec3(1,0,0)
fixedBody.quaternion.setFromAxisAngle(rot, Math.PI/2)
fixedBody.position.set(0,0,0);

*/
function makeWalls() {

var h,h2;
var fixedBody = new CANNON.Body({mass: 0,

material: groundMaterial });
h=Height/2+2.0;
var fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,2,h));
fixedShape.color = 0x00ffff;
fixedBody.addShape(fixedShape);
fixedBody.position.set((X-1)*2.5,0,h+0.5);
world.addBody(fixedBody);
GUI.addVisual(fixedBody);
fixedBody = new CANNON.Body({mass: 0,

material: groundMaterial });
fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,2,h));
fixedShape.color = 0x00ffff;
fixedBody.addShape(fixedShape);
fixedBody.position.set((X-1)*2.5,(Y-1)*5,h+0.5);
world.addBody(fixedBody);
GUI.addVisual(fixedBody);
h2=(Z-1)*5+1;
fixedBody = new CANNON.Body({mass: 0,

material: groundMaterial });
fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,0.5,h2/2));
fixedShape.color = 0x00ffff;

Simulation 47

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

fixedBody.addShape(fixedShape);
fixedBody.position.set((X-1)*2.5,-1,2*h+h2/2+0.5);
world.addBody(fixedBody);
GUI.addVisual(fixedBody);
fixedBody = new CANNON.Body({mass: 0,

material: groundMaterial });
fixedShape = new CANNON.Box(new CANNON.Vec3(X*2.5,0.5,h2/2));
fixedShape.color = 0x00ffff;
fixedBody.addShape(fixedShape);
fixedBody.position.set((X-1)*2.5,(Y-1)*5+1,2*h+h2/2+0.5);
world.addBody(fixedBody);
GUI.addVisual(fixedBody);

}

function makeLoad(x,y,r,m) {
var h=2;
if (!r) r=10;
var bShape = new CANNON.Cylinder(r,r,h,16);
bShape.color=’red’;
var b = new CANNON.Body({ mass: m||Mass });
b.addShape(bShape);
b.position.set(x,y,Height+4.0+h/2+(Z-1)*5+1.0+0.5);
bodies.push(b);
loadings.push(b);

}

function makeBox(x,y,z) {
var bShape = new CANNON.Box(new CANNON.Vec3(0.5,0.5,0.5));
var b = new CANNON.Body({ mass: mass });
// bShape.grid=3;
b.addShape(bShape);
b.position.set(x,y,z+Height);
bodies.push(b);
return b;

}

function connect(bodyA,bodyB,settings) {
var sAB, localPivotA,localPivotB,constraint,

dir=new CANNON.Vec3();
sAB = new CANNON.Spring(bodyA, bodyB, {

stiffness:stiffness+(MC-2*MC*Math.random()),
damping:damping,
computeRestLength:true

});
// world.log(sAB.restLength);

springs.push(sAB /*,sBA*/);

Simulation 48

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

world.addSpring(sAB);
if (!bodyA.springs) bodyA.springs={};
if (!bodyB.springs) bodyB.springs={};
bodyB.gridPosition.vsub(bodyA.gridPosition,dir);
bodyA.springs[dir.x+’,’+dir.y+’,’+dir.z]=sAB;
dir=dir.negate();
// bodyB.springs[dir.x+’,’+dir.y+’,’+dir.z]=sAB;
return sAB;

}

function makePlate(l,n,m,d) {
var dx=5,dy=5,dz=5,b,i,j,k,u,

x=0,y=0,z=dz*m,offInd=0,bA,bB;
function get(i,j,k,d) {

if (d) i+=d[0], j+=d[1], k+=d[2];
if (masses[i] && masses[i][j] && masses[i][j][k]) return masses[i][j][k];
else return none;

}
for(k=0;k<l;k++) {

z=dz*m;
for(j=0;j<m;j++) {

y=0;
for(i=0;i<n;i++) {

if (!contains(holes,[k,i,j])) {
b=makeBox(x,y,z);
masses[k][i][j]=b;
b.gridPosition=new CANNON.Vec3(k,i,j);

}
y=y+dy;

}
z=z-dz;

}
x=x+dx;

}
for(k=0;k<m;k++) {

for(j=0;j<n;j++) {
for(i=0;i<l;i++) {

var vec = [

[0,1,0],
[1,1,0],
[1,0,0],
[1,-1,0],

[0,0,1],

Simulation 49

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

[0,-1,1],
[-1,-1,1],
[-1,1,1],
[0,1,1],
[1,1,1],
[1,0,1],
[1,-1,1]

];
for(u in vec) {

bA=get(i,j,k);
bB=get(i,j,k,vec[u]);
if (bA && bB) connect(bA,bB);

}
}

}
}

}
makePlate(X,Y,Z);
makeWalls();
// makeLoad(10,15,2,5);

for(i=0; i<constraints.length; i++)
world.addConstraint(constraints[i]);

for(i=0; i<bodies.length; i++){
world.addBody(bodies[i]);
GUI.addVisual(bodies[i]);

}

world.addEventListener("postStep",function(event){
for(var i in springs) {

springs[i].applyForce();
}

});

// A reporter returning a table
// First row must be the header of the table
function report() {

var
i,j,k,
max=0,min=100000,
tbl1=[

[’Node’,’Spring’,’Force’,’Displacement’]
],
tbl2=[

Simulation 50

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

[’X’,’Value’]
];

for(k=0;k<X;k++) {
for(j=0;j<Z;j++) {

for(i=0;i<Y;i++) {
if (!contains(holes,[k,i,j])) {

var node = masses[k][i][j];
node.springs.forEach(function (s,sp) {

tbl1.push([[k,i,j].join(’,’),sp,
Math.abs(s.force),s.length-s.restLength]);

max=Math.max(max,Math.abs(s.force));
min=Math.min(min,Math.abs(s.force));

});
}

}
}

}

tbl2.push([’Force Min,’,min]);
tbl2.push([’Force Max.’,max]);

return {
Springs:tbl1,
Global:tbl2,

};
}

return {
masses:masses,
loadings:loadings,
map: function (id) {

// Map logical node [i,j,k] to respective mass body
try { return masses[id[0]][id[1]][id[2]] } catch (e) {};

},
report: report

}
}

10.2. Table Reports
Same as with theMAS simulation a report function can defined returning tablesthat can be displayed on clicking on the information button. A table is an arrayof rows, where the first row is the header (i.e., string []). Multiple tables canbe reported. Each table is stored in the record returned by the report function.

Simulation 51

Programming of Mobile Agents and the JavaScript Agent Machine (JAM)

function report() {
return {

tbl1: [[’Head1’,’Head2’,..],[Col1,Col2,..],[..]],
tbl2: [[’Head1’,’Head2’,..],[Col1,Col2,..],[..]],
..

}
}

Simulation 52

	1. Reactive Agents and the ATG Model
	2. AgentJS
	3. JAM: The JavaScript Agent Machine
	4. Agent Input-Ouput System (AIOS)
	4.1. Agent Scheduling and Check-pointing
	4.2. AgentJS API: Computational Functions
	4.3. AgentJS API: Environmental Information and Modification
	4.4. AgentJS API: Tuple Space Operations
	4.4.1. Active Tuples

	4.5. AgentJS API: Signals and Signal Handler
	4.6. AgentJS API: Agent Control
	4.7. AgentJS API: Mobility
	4.8. AgentJS API: Ad-hoc Connectivity
	4.9. AgentJS API: Scheduling Blocks
	4.10. AgentJS API: SQL Operations*

	5. JAM API
	6. JAMLIB
	6.1. Synopsis
	6.2. Description

	7. Using JAM
	7.1. JAM Library
	7.2. Creating a simple JAM Instance
	7.3. Adding and Importing Agent Class Templates
	7.4. Creating Agents programmatically
	7.5. Connecting JAM nodes
	7.6. Extending AIOS of JAM
	7.7. Extended IO of JAM: Adding tuple providers

	8. JAMSH
	8.1. Synopsis
	8.2. Description
	8.3. Networking
	8.3.1. UDP Unicast ports and links
	8.3.2. UDP Multicast ports and links
	8.3.3. UDP Multicast ports using broker service

	8.4. Example

	9. JAM APP
	9.1. GUI
	9.2. Options
	9.3. Configuration File
	9.4. Node Management Agent

	10. Simulation
	10.1. Physical Simulation
	10.2. Table Reports

