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Motivation
Multi-Material Manufacturing

Generally well suited for
multi-material approaches.

Polymer multi-material
options available. 

 Additive Manufacturing

 Compound/Hybrid Casting

 etc.
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 Additive Manufacturing

 Compound/Hybrid Casting

 etc.

Motivation
Multi-Material Manufacturing

Source: 
Lehmhus, D.; von Hehl, A.; Hausmann, J.; 
Kayvantash, K.; Alderliesten, R.; Hohe, J. New 
Materials and Processes for Transport Applications: 
Going Hybrid and Beyond.
Advanced Engineering Materials 21 (2019) 1900056.
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 Optimization problem:
Minimization of total strain energy

 Basis: Finite Element (FE)
model including loads and
boundary conditions.

 Representation of material
via finite element properties.

 Linear elastic FE simulation
yields element-based strain
energy data.

 Element-wise redistribution
of material properties leads
to improved variants.
  

Multi-Phase Topology Optimization
The Basic Principle

Burblies. A; Busse, M.  Computer Based Porosity Design by Multi Phase Topology Optimization. 
Multiscale & Functionally Graded Materials Conference (FGM2006), Honolulu (USA), Oct. 15 th -18th 2006.
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 Set up the FE model of the problem under scrutiny.

 Predefine number, volume fraction and (elastic) properties of materials.

 Associate material properties to finite element sets, maintaining the predefined volume fractions.

 Randomly re-distribute material properties over the FE model.

 Perform FE simulations and record element-level strain strain energies and volume,
as well as total strain energy (model-level). 

 Redistribute material properties (a) randomly, (b) based on a specific optimization strategy, or (c) 
strategically, but including some random element. 

 Make sure material fractions are maintained – if this is not the case, apply appropriate changes. 

 Perform an FE simulation, and check whether total strain energy has been reduced – if yes, continue with 
the present configuration above (iteration), if not, create and evaluate a new candidates.

 Continue until further iterations do not yield significant improvements anymore.

Multi-Phase Topology Optimization
The Basic Principle
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 randomized exchange of
elements to create a new
configuration

 repetition (inner steps) until
improvement over previous state
achieved (outer steps)

 variations initially tested

 fraction of elements subject to 
random exchange

 constrained and unconstrained

Optimization Strategies
Simulated Annealing
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 randomized exchange of
elements to create a new
configuration

 repetition (inner steps) until
improvement over previous state
achieved (outer steps)

 variations initially tested

 fraction of elements subject to 
random exchange

 constrained and unconstrained

Optimization Strategies
Simulated Annealing: Strategic Sorting



© Fraunhofer IFAM

 creation of a population of
20 variants for each (outer)
step

 inner steps correspond to the
evaluation of the 20 population
members, i. e. at this stage, each
outer step invariably implies
20 inner steps

 selection of a survivor (best of 20)
and crossover with the parent,
followed by mutation

 So far, no constraint implemented

Optimization Strategies
Genetic Algorithms
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 Selected sample load case: Asymmetric 3-point-bending as depicted below.

 Small initial model for fast calculation and initial comparison of algorithms:

 832 elements of type C3D8R.

 Three different materials at equal volume fractions:

 „aluminum“: E = 70 GPa, Poisson‘s ratio 0,3
 „copper“: E = 110 GPa, Poisson‘s ratio 0,3
 „steel“: E = 200 GPa, Poisson‘s ratio 0,3

 Initial configuration left 1/3 of beam Al, 
centre 1/3 Cu, right 1/3 Fe  

Results & Discussion
Load Case

sketch of the load case
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 Comparison of 10 runs with
identical initial configuration,
i. e. distribution of materials.

 First constraint solving leads to
a major drop in strain energy.

 Afterwards, fine-grained 
minimization based on the
Monte Carlo simulation
approach. 

Results & Discussion
Simulated Annealing, Constrained
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 Comparison of 10 runs with
varied initial configuration,
i. e. distribution of materials.

 First constraint solving leads to
a major drop in strain energy.

 Afterwards, fine-grained 
minimization based on the
Monte Carlo simulation
approach. 

 No major difference caused
by variation of starting
configurations.

Results & Discussion
Simulated Annealing, Constrained
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 Moving elements:
Simulated annealing,
with constraints.

Results & Discussion
Simulated Annealing, Constrained

AlAl

FeFeCuCu

Start

Load
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 Comparison of 10 runs with
identical initial configuration,
i. e. distribution of materials.

 Monotonic descent of strain 
energy – GA optimization works.

 Initial rise in strain energy is
caused by the fact that the
chosen reference at 46.901 mJ
is the ordered strucuture as
shown initially.

Results & Discussion
Genetic Algorithm, Unconstrained
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 Comparison of 10 runs with
varied initial configuration,
i. e. distribution of materials.

 Monotonic descent of strain 
energy – GA optimization works.

 Initial rise in strain energy is
caused by the fact that the
chosen reference at 46.901 mJ
is the ordered strucuture as
shown initially.

 As expected, more variation in
initial strain energies, converging
to previous slide‘s results later. 

Results & Discussion
Genetic Algorithm, Unconstrained
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 starting point 46.901 mJ

 unconstrained SA achieves next to
no improvement 

 constraints controlling material
redistributionlead to approx. 30%
reduction in total strain energy

 GA achieve notable strain energy
reduction (approx. 25 %) even
when unconstrained

 scatter (10 runs each) is only slightly
lower when starting from identical
random distributions rather than
different ones

Results & Discussion
Comparison of Optimization Algorithms: Final Strain Energy
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 Unconstrained simulated annealing algorithms require far too many iterations steps.

 Suitable constraints can lead to really significant improvements.

 Constrained simulated annealing approaches outperform unconstrained genetic algorithms.

 However, while unconstrained simulated annealing does not succeed in reducing strain energy, 
unconstrained GA does (10% margin after approx. 1000 steps). 

 For both simulated annealing and genetic algorithms, variation of results when using identical as opposed 
to different random distributions as starting point is slightly reduced, but remains in a similar range. 

Conclusion
Main Findings
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 Further optimization of algorithms, including pre-check of new configurations prior to FE simulation runs to 
further reduce runtime.

 Adding the concept of constraints to the GA algorithm. 

 Evaluation of higher complexity problems (more elements, materials, loads, …).

 Extension towards plasticity: Check for local transgression of material-dependent yield stress and correct 
where needed.

Outlook
What else to ask for?



© Fraunhofer IFAM

Thank you 
for your kind attention!

Arouna Patouossa Mounchili
Dr.-Ing. Dirk Lehmhus

Fraunhofer IFAM

Department of Casting Technology 
and Lightweight Construction

Wiener Straße 12
28359 Bremen

Tel. +49 (0)421 2246 7215 (D.L.)
Email dirk.lehmhus@ifam.fraunhofer.de

arouna.patouossa.mounchili@ifam.fraunhofer.de  

PD Dr. Stefan Bosse

Universität Bremen

Department of Mathematics
and Computer Science 

Bibliothekstraße 3
28359 Bremen

Tel. +49 (0)421
Email s.bosse@uni-bremen.de 

mailto:dirk.lehmhus@ifam.fraunhofer.de
mailto:arouna.patouossa.mounchili@ifam.fraunhofer.de
mailto:s.bosse@uni-bremen.de


© Fraunhofer IFAM

Backup Slides



© Fraunhofer IFAM

 randomized exchange of elements
to create a new configuration

 repetition (inner steps) until
improvement achieved (outer steps)

 variations

 fraction of elements subject to 
random exchange

 constrained and unconstrained

Optimization Strategies
Simulated Annealing
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 creation of a population of 20 variants
for each (outer) step

 inner steps correspond to the evaluation
of the 20 population members, i. e. at
this stage, each outer step implies
20 inner steps

 selection of a survivor and crossover with
the parent, followed by mutation

 no constraint implemented

Optimization Strategies
Genetic Algorithms
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 starting point 46.901 MJ strain energy

 unconstrained simulated annealing
achieves next to no improvement 

 constraints controlling redistribution
of materials lead to approximately 30%
reduction in total strain energy

 genetic algorithms result in significant
strain energy reduction (approx. 25 %)
even when unconstrained

 scatter (10 runs each) is slightly lower
when starting from identical random
distributions compared to different
ones

Results & Discussion
Comparison of Optimization Algorithms: Final Strain Energy
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