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Motivation
Multi-Material Manufacturing
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Multi-Material Manufacturing i protosnd
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Motivation
Multi-Material Manufacturing

¥ Additive Manufacturing

¥ Compound/Hybrid Casting
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Multi-Phase Topology Optimization
The Basic Principle

¥ Optimization problem: ] . 1 .
Minimization of total strain energy U=—=- J;f o-dV =—-|& -D-e-dV
¥ Basis: Finite Element (FE)

model including loads and
boundary conditions.

¥ Representation of material
via finite element properties.

¥ Linear elastic FE simulation
yields element-based strain
energy data.

NV A
AL
[ | [

B Element-wise redistribution

of material properties leads

to improved variants. Burblies. A; Busse, M. Computer Based Porosity Design by Multi Phase Topology Optimization.
Multiscale & Functionally Graded Materials Conference (FGM2006), Honolulu (USA), Oct. 15t -18t 2006.
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Multi-Phase Topology Optimization
The Basic Principle

Set up the FE model of the problem under scrutiny.

Predefine number, volume fraction and (elastic) properties of materials.

Associate material properties to finite element sets, maintaining the predefined volume fractions.
Randomly re-distribute material properties over the FE model.

Perform FE simulations and record element-level strain strain energies and volume,
as well as total strain energy (model-level).

¥ Redistribute material properties (a) randomly, (b) based on a specific optimization strategy, or (c)
strategically, but including some random element.

¥ Make sure material fractions are maintained — if this is not the case, apply appropriate changes.

¥ Perform an FE simulation, and check whether total strain energy has been reduced — if yes, continue with
the present configuration above (iteration), if not, create and evaluate a new candidates.

¥ Continue until further iterations do not yield significant improvements anymore.
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Multi-Phase Topology Optimization
The Basic Principle

Set up the FE model of the problem under scrutiny.

Predefine number, volume fraction and (elastic) properties of materials.

Associate material properties to finite element sets, maintaining the predefined volume fractions.
Randomly re-distribute material properties over the FE model.

Perform FE simulations and record element-level strain strain energies and volume,
as well as total strain energy (model-level).

Redistribute material properties (a) randomly, (b) based on a specific optimization strategy, or (c)
strategically, but including some random element.

W Make sure material fractions are maintained — if this is not the case, apply appropriate changes.

® Perform an FE simulation, and check whether total strain energy has been reduced — if yes, continue with
the present configuration above (iteration), if not, create and evaluate a new candidates.

B Continue until further iterations do not yield significant improvements anymore.
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Optimization Strategies
Simulated Annealing

Property
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Optimization Strategies
Simulated Annealing: Strategic Sorting
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Optimization Strategies
Genetic Algorithms

B creation of a population of — ® Dismbuton
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Results & Discussion
Load Case

W Selected sample load case: Asymmetric 3-point-bending as depicted below.

B Small initial model for fast calculation and initial comparison of algorithms:
832 elements of type C3D8R.

¥ Three different materials at equal volume fractions:

L2aluminum®: E =70 GPa, Poisson’s ratio 0,3
,copper": E = 110 GPa, Poisson’s ratio 0,3
steel“: E = 200 GPa, Poisson’s ratio 0,3

¥ [nitial configuration left 1/3 of beam Al, F| F
centre 1/3 Cu, right 1/3 Fe F = 200N 1

sketch of the load case
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Results & Discussion
Simulated Annealing, Constrained

B Comparison Of 10 runs Wlth - Strain Energy: SA Constrained Random(same)
identical initial configuration,

I. e. distribution of materials. 48

¥ First constraint solving leads to *

a major drop in strain energy. 44

W Afterwards, fine-grained 42

minimization based on the
Monte Carlo simulation
approach.

40

strain energy [mJ]

38

36

34 _—

32
1e+0 5e+0 Ze+1 1e+2 3e+2

steps
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Results & Discussion
Simulated Annealing, Constrained

B Comparison Of 10 runs W|th - Strain Energy: SA Constrained Random(different)
varied initial configuration,

I. e. distribution of materials. 48

¥ First constraint solving leads to *

a major drop in strain energy. 44

W Afterwards, fine-grained 42

minimization based on the
Monte Carlo simulation

40

strain energy [mJ]

38

approach.
. . 36
B No major difference caused
by variation of starting 34 — ,
configurations. -
1e+0 5e+0 2e+1 1e+2 3e+2

steps
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ISCUSSION

Results & D

Simulated Annealing, Constrained

® Moving elements:

Simulated annealing,
with constraints.
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Results & Discussion

Genetic Algorithm, Unconstrained

W Comparison of 10 runs with
identical initial configuration,
i. e. distribution of materials.

B Monotonic descent of strain
energy — GA optimization works.

¥ Initial rise in strain energy is
caused by the fact that the
chosen reference at 46.901 mJ
Is the ordered strucuture as
shown initially.

strain energy [mJ]

Strain Energy: GA Unconstrained Random(same)

52
50
48
46
44
42
40

38

36

34
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Results & Discussion
Genetic Algorithm, Unconstrained

B Comparison Of 10 runs W|th - Strain Energy: GA Unconstrained Random(different)
varied initial configuration,
I. e. distribution of materials.

50

48

B Monotonic descent of strain
energy — GA optimization works.

46

44

¥ Initial rise in strain energy is
caused by the fact that the
chosen reference at 46.901 mJ
Is the ordered strucuture as
shown initially.

42

strain energy [mJ]

40

38

36

34
B As expected, more variation in

[ [ " L] L] [ 3
initial strain energies, converging S > A QR > > >
to previous slide's results later.

steps
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Results & Discussion
Comparison of Optimization Algorithms: Final Strain Energy

[ | Starting pOint 46.901 mJ - B GA unconstr. same GA unconstr. diff. ] SA constr. diff. B SA unconstr. diff.

® unconstrained SA achieves next to 48
no improvement

46 [
¥ constraints controlling material 44
redistributionlead to approx. 30% 45 I
reduction in total strain energy 4
¥ GA achieve notable strain energy £ ag
reduction (approx. 25 %) even . x
when unconstrained y
B scatter (10 runs each) is only slightly .
lower when starting from identical . .

random distributions rather than 100 steps 1000 steps 5000 steps
different ones

strain energy [mJ]
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Conclusion
Main Findings

Unconstrained simulated annealing algorithms require far too many iterations steps.
Suitable constraints can lead to really significant improvements.
Constrained simulated annealing approaches outperform unconstrained genetic algorithms.

However, while unconstrained simulated annealing does not succeed in reducing strain energy,
unconstrained GA does (10% margin after approx. 1000 steps).

¥ For both simulated annealing and genetic algorithms, variation of results when using identical as opposed
to different random distributions as starting point is slightly reduced, but remains in a similar range.
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Outlook
What else to ask for?

¥ Further optimization of algorithms, including pre-check of new configurations prior to FE simulation runs to
further reduce runtime.

¥ Adding the concept of constraints to the GA algorithm.
¥ Evaluation of higher complexity problems (more elements, materials, loads, ...).

B Extension towards plasticity: Check for local transgression of material-dependent yield stress and correct
where needed.
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Optimization Strategies
Simulated Annealing

¥ randomized exchange of elements
to create a new configuration

¥ repetition (inner steps) until
improvement achieved (outer steps)

® variations

fraction of elements subject to
random exchange
constrained and unconstrained

Simulated annealing

Set the initial temperature

Interaction

with Abaqus

—

Create a modified solution

>I Generate inp-File }—-b‘ Run AbaqusJob

‘ Calculate the energy of the solution

Create random initial solution ‘
\
\

}

read json-file and

save elements strain

energy

Interpret result from
odb-file and save as

A

json file

solution better

Set currentsolution as best

Update temperature

‘@’ Universitat Bremen

\

~ Fraunhofer

IFAM



Optimization Strategies
Genetic Algorithms

W creation of a population of 20 variants

for each (outer) step Genetic Algorithm
Interaction
¥ inner steps correspond to the evaluation Sreatea random population with Abaqus ||
of the 20 population members, i. e. at | S— — . [ Cenerate meie —__ Run Abagus Job
. . . ) Calculation of the fithess
thIS Stage’ eaCh OUter Step Implles read json-file and Interpret:;sultfrom
20 Inner Steps * saveeI:rTeerntsstrain <+ odb-fi.lseoinfti:lléaveas
| Creation of the new population | % J
¥ selection of a survivor and crossover with R
the parent, followed by mutation | paremfelemon |
¥ no constraint implemented | oo |
!
| Mutation |
v

Stop criterion
No met?

Yes
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Results & Discussion
Comparison of Optimization Algorithms: Final Strain Energy

60

W starting point 46.901 MJ strain energy

Simulated anm_ealing:
® unconstrained simulated annealing 15 unconstrained I \aried initial configuration

) ) 3, 4 constrained
achieves next to no improvement

a
o

. Genetic algorithms: B same initial configuration
5,6 unconstrained

¥ constraints controlling redistribution
of materials lead to approximately 30%
reduction in total strain energy

~
o

w
o

B genetic algorithms result in significant
strain energy reduction (approx. 25 %)
even when unconstrained

N
o

total strain energy, final value [mJ]

W gscatter (10 runs each) is slightly lower 10
when starting from identical random
distributions compared to different 0
ones 1 2 3 - 5 6

optimization approaches
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Title
Subtitle

¥ bullet point 1
¥ bullet point 2
® bullet point 3
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Title
Subtitle

® bullet point 1, level 1
® bullet point 2, level 1

bullet point 1, level 2
bullet point 2, level 2
bullet point 3, level 2

® bullet point 3, level 1
® bullet point 4, level 1
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