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Abstract

Traditionally, there are two different ways to model and imple-
ment System-On-Chip-Designs (SoC): using a structural and/or a be-
havioural level. The structural level decomposes a SoC into indepen-
dent submodules interacting with each other using centralized or dis-
tributed networks and communication protocols. The behavioural level
usually describes the behaviour of the full design interacting with the en-
vironment. Complex reactive systems with dominant and complex con-
trol paths play an increasing role in SoC-design. The major contribution
to concurrency appears on control path level. This article gives an in-
troduction to SoC-design methodology using the behavioural hardware
compiler ConPro providing a programming model based on concurrent
communication sequential processes (CSP) with an extensive set of
interprocess-communication primitives. An extended case study of a
communication protocol used in high density sensor-actuator-networks
should demonstrate the design of a SoC for a robot actuator. The com-
munication protocol is suited for high-density intra- and interchip net-
works.

Key Words and Phrases: Circuit Design, Digital Logic, SoC, NoC, Register-Transfer-
Logic, Communicating Sequential Processes, Higher-Level-Synthesis, Multiprocess-
ing, Parallel Programming, FPGA, ASIC
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1 Introduction and State of the Art

Today there is an increasing requirement for the development of System-On-
Chip-Designs (SoC) using Application-Specific Digital Circuits, with increas-
ing complexity, too, serving low-power and miniaturization demands. The
structural decomposition of such a SoC into independent submodules re-
quires smart networks and communication (Network-on-Chip, NoC) serving
chip area and power limitations. Traditionally, SoCs are composed of micro-
processor cores, memory and peripherial components.
But in generally massiv parallel systems require modelling of concurrency
both on control- and data-path level. Digital logic systems are preferred for
exploration and implementation of concurrency.
Traditionally, digital circuits are modelled on hardware behaviour or gate level,
but usually the entry point for a reactive or functional system is the algorithmic
level. The Register-Transfer-Logic (RTL) on architecture and hardware level
must be derived from the algorithmic level, requiring a raise of abstraction of
RTL ZHU01.
With increasing complexity, higher abstraction levels are required, moving
from hardware to algorithmic level. Naturally imperative programming lan-
guages are used to implement algorithms on program-controlled machines
which process a sequential stream of data- and control operations. Using
this data-processing architecture, a higher-level imperative language can be
simply mapped to a lower-level imperative machine language, which is a rule-
based mapping, automatically performed by a software compiler.
But in circuit design, there is neither an existing architecture nor an existing
low level language that can be synthesized directly from a higher level one.
An imperative programming approach provides both abstraction from hard-
ware and direct implementation of algorithms, but usually reflects the
memory-mapped von-Neumann computer architecture model.
Another important requirement of a programming language in circuit design
(in contrast to software design) is the ability to have fine-grained control over
the synthesis process, usually transparent.
Using generic memory-mapped languages like C makes RTL hardware syn-
thesis difficult because of transparency of object references (using pointers)
preventing RTL mapping. Additionally, concurrency models are missing in
most software languages. There are many attempts to use C-like languages,
but either with restrictions, prohibiting anonymous memory access with point-
ers, or using a program-controlled (multi-) processor architecture with clas-
sical hardware-software-co-design, actually dominant in SoC-Design. But
SoC-designs using generic or application-specific processor architectures
complicate low-power designs and concurrency is coarse grained.
One example is PICO KAT02 , addressing the complete hardware design flow
targeting SoC and customizable or configurable processors, enhanced with
custom-designed hardware blocks (accelerators). The RTL level is modelled
with C. The program-controlled approach with processor blocks enables soft-
ware compilation and unrestricted C (functions, pointers) but lacks support of
true bit-scaled data objects.
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Introduction and State of the Art

Another example is SPARK SPA04, a C-to-VHDL high-level framework, cur-
rently with the restrictions of no pointers, no function recursion, and no irreg-
ular control-flow jumps. It is embedded in a traditional hardware-software-co-
design flow. It is based on speculative code motions and loop transforma-
tions used for exploration of concurrency. SPARK generates pure RTL. Only
a single-threaded control-flow is provided.
Though SystemC provides many features suitable for higher-level synthe-
sis, it is primarily used for simulation and verification, and only a subset can
be synthesized to circuits. True bit-scaled data types are supported. Con-
currency can be modelled using threaded processes, for example used in
Forthes commercial synthesis tool Cynthesizer HLS08. Interprocess com-
munication is modelled on transaction level (TLM). SystemC provides a high-
level-approach to model hardware behaviour and structure, rather than algo-
rithms.
Non of these approaches fully satisfy the requirements for pure RTL cir-
cuit design while using C-based languages, especially providing a consistent
hardware, software, and concurrency model.
Efficient hardware design requires more knowledge about objects than clas-
sical languages like C can provide, for example true bit-scaled registers,
access, and implementation models on architecture level (for example sin-
gleport versa dualport RAM blocks, static versa dynamic access synchro-
nization). The generic software approach only covers the implementation
of algorithms, but in hardware design the synthesized circuit must be con-
nected to and react with the outside world (other circuits, communication
links and many more), thus there must be a programming model to inter-
face to hardware blocks, consistent with the imperative programming model.
Furthermore, there must be a way to easily implement synchronization al-
ways required in presence of concurrency (at least on control path level).
A multi-process model, established in the software programmer community,
provides a common approach for modelling parallelism, which is the preferred
approach to implement and partition reactive systems on algorithmic level.
This article focuses 1. on the design-methodology of SoCs using a concur-
rent multi-process model and the behavioural programming language Con-
Pro CON08, 2. the synthesis methods and architecture models for com-
piling mainly reactive systems using this imperative programming language
towards RTL level (modelled on hardware behaviour level VHDL) CON09.
Concurrency is modelled explicitly but can be exploited implicitly, too.
The following section 2 describes the used concurrency process model and
interprocess communication, and section 3 explains basics of the ConPro
programming language. The synthesized RTL architecture with relation to
the programming model is described in section 5, and finally section 6 gives
an overview of the synthesis process and the synthesis rules.
An extended design study of a protocol implementation suited for sensor- and
actuator networks is presented in section 7 and demonstrates the power and
suitability of the synthesis approach and tool for complex circuit designs.
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2 Modelling and Implementing Concurrency

Many algorithms used in applications like communication protocolls, sensors-
and actuators are in general massiv parallel control systems LEE06, with
many different tasks to be performed. Therefore, modelling concurrency is an
essential part of a complex SoC-design. Concurrency can be either modelled
explicitly (not transparent) or implicitly (transparent) by the synthesis tool:

Explicit Parallelism

The programming model explicitly describes parallelism. Usually this
is the preferred method for exploration of coarse-grained parallelism,
which requires partitioning on algorithmic level, well done by the pro-
grammer, rather by the synthesis tool. No further computational effort
must be made by the synthesis tool.

Implicit Parallelism

The compiler tries to explore and derive parallelism from an initially
sequential program specification, described with an imperative lan-
guage, or using functional languages with (hidden) inherent concur-
rency SHA98. Mostly, concurrency is derived from loops using unroll
techniques with allocation of resources in parallel, but concurrency can
be explored in basicblocks of data-independent expressions, too. For
example, both expressions x ←x +1 and y ←y + 1 can be sched-
uled (using RTL only) in one time step requiring two adders. Usually
this is the preferred method for exploration of fine-grained parallelism
on data path level. High computational effort must be made for balanc-
ing area and time constraints, usually done with an iterative approach
KU92.

There are several advantages of the explicit concurrency model versa the
implicit model derived from an initially pure sequential code, found in most
extended C-like approaches HLS08, especially in the context of reactive sys-
tems. Knowledge-based modelling of concurrency can lead to a higher de-
gree of concurrency.

A multi-process model with communicating sequential processes provides a
concise way, 1. to directly map imperative programming languages to RTL,
and 2. to provide parallelism on control path level, required for massive par-
allel control systems. The multi-process model requires explicit synchroniza-
tion, shown in figure 1. Interaction between processes, mainly access of
shared resources, is request-acknowledge based.
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Modelling and Implementing Concurrency

F 1: The multi-process model with request-based synchronization
(IPC).

Concurrency reduces latency of an algorithm, and minimized latency is a
precondition for the design and implementation of real-time systems.

Process Model and RTL-Architecture

A process φ provides an execution environment consisting of a control path Γ
implemented with a Finite-State-Machine (FSM) and a data path ∆ perform-
ing calculations, shown in figure 2.

F 2: The process implementation on hardware architecture level.

A process φ bounds a sequence of instructions κ={κ1,κ2,...} to this execution
environment. Process instructions on programming level must be executed
in the order they appear (imperative nature). Therefore, the set of program
instructions κ can be directly mapped to a set of states Σ of the FSM, imple-
mented entirely in RTL.
An algorithm can be partitioned on control path level using a set of N pro-
cesses Φ={φ1,φ2,...,φN}, initially executing independently and concurrently,
doing communication, based on the model of communicating sequential pro-
cesses (CSP) proposed in HOA85. A set of interprocess-communication
(IPC) ℑ is required for synchronization. IPC creates control relations between
processes: ℑi:φn↔φm. Using ConPro, it is possible to map multi-processing
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Modelling and Implementing Concurrency

and interprocess communication to RTL directly with low resource requirements,
shown and proved in this article. The ConPro language CON09 explained in
this article provides concurrency both on control path level using processes and
on data path level using bounded basicblocks, either specified on program-
ming level or derived automatically by a basicblock scheduler. Synthesis of
RTL from an imperative programming language providing the multi-process
model can be superior compared with traditional hardware-software-co-de-
sign using multi-processor architectures because abstract objects, especially
all kind of interprocess-communication, can be implemented more efficiently
in hardware than in software, both concerning resources and latency.
The setΦof processes belongs to a module. On module level, a set of global
shared objectsα=ℜ∪ℑ can be defined, and on process level, local objects
can be defined. Processes can access both their local and the global objects.
These objectsαare either used for data storage (ℜ={registers, variables in
RAM blocks}), or for IPC (ℑ={mutex, semaphore, queue, timer,...}).
The ConPro synthesis tool maps programming level processes and the in-
struction sequenceκto hardware components (entities in VHDL terminology),
each consisting of:

1. a FSM (state register and state transition network) whose states
representing the initial program flow of this particular process,

2. combinational data path of RTL (data path multiplexer, demultiplex-
er, functional units), and

3. transitional data path of RTL (data path multiplexer, demultiplexer,
functional units, and local registers), shown in figure 2.

Processes can be controlled by other processes. A process is treated like an
abstract data type object (ADTO). Process control is established with the
appropiate methods. Starting and stopping of processes are non-blocking
operations, thereby calling a process which suspends the caller process un-
till the called (started) process reaches its end state.

Interprocess-Communication

Concurrency on control path level requires synchronization AND00. In
the context of a SoC-design consisting of a multi-processor architecture,
(coarse-grained) synchronization between different submodules is performed
using a distributed or centralized network infrastructure and message pass-
ing. In the context of a behavioural multi-process-model (CSP), synchroniza-
tion is handled by interprocess-communication using abstract objects with
an appropiate set of methods applied to, for example, queues (read,write) or
semaphores (up,down).
These IPC objects are content-based , in contrast to network communication
for example in program-controlled multi-processor architectures. Therefore,
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Modelling and Implementing Concurrency

these IPC objects are optimally matched to the communication purpose pro-
ducing lowest communication overhead, and can be implemented directly
with hardware blocks. Message passing is reduced to hardware signals.
Realtime-systems require temporal synchronization , provided by the IPC
objects with time skew and latency lower than one clock cycle, not achievable
by generic network architectures and software implementations.
At least the access of shared resources must be protected using mutual ex-
clusion locks (mutex). Access of all global objects is implicitly protected and
serialized by a mutex scheduler. IPC and external communication objects are
abstract object types, they can only be modified and accessed with a defined
set of methods υ={υ1,υ2,...}, shown in table 1. Queues and channels can be
used in expressions and assignments like any other data storage object.

IPC Object ℑ Description Methods υ
mutex Mutual Exclusion

Lock
lock, unlock

semaphore Counting
Semaphore

init, up,down

barrier Counting Barrier init, await

event Signal Event init, await,

wakeup

timer Periodic Timer
Event

init,
set,start,
stop, await

queue (*) FIFO queue read, write

channel (*) Handshaken
Channel

read, write

link External
Handshaken
Channel

read, write

T 1: Available IPC objects. Queues and channels belong both to the
core and abstract object class, and can be used within expressions and
assignments (*).

The link IPC object is used for communication between different clock do-
mains, either within a SoC (Interprocess), or between different compo-
nents (Intraprocess). The link object provides a fast parallel communica-
tion channel for Global-Asynchronous-Local-Synchronous (GALS) system
design. The link uses dual-rail encoding of data lines and a request-
acknowledge handshake, derived from asynchronous circuit design using
Muller-C-Gates BAI01 . Only full-custom ASIC design supports synthesis of
asynchronous circuit parts, like C-gates. To provide synthesis of such link
components for all technologies (FPGA, standard-cell and custom-designed
ASICs) using only synchronous circuits, the Muller-C-Gates are implemented
with synchronous FSMs.
Concurrent access of shared resources (including IPC itself) is serialized by
a scheduler, which prevents realtime capability on clock resolution, because
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Modelling and Implementing Concurrency

the upper limit of access time is unknown and depends on the program and
algorithm. But realtime is possible using mutual exclusion which (spatial and
temporal) protects parts of a program.
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3 Behavioural Programming Language ConPro

The ConPro programming language consists of two classes of statements: 1.
process instructions mapped to FSM/RTL, and 2. type, and object definitions.
It is an imperative programming language with strong type checking. Beneath
algorithmic statements, the programming language provides some kind of
relation to the hardware circuit synthesized from the programming level. Ad-
ditionally, there is a requirement to get full programmability of the design
activities themselves, i. e. of the synthesis process, too RU87, implemented
here with constrained rules on block level, providing fine-grained control of the
synthesis process. The synthesis process can be parameterized by the
programmer globally or locally on instruction block level, for example,
scheduling and allocation.
The set of objects is splitt into two classes: 1. data storage type setℜ, and 2.
abstract data type object set (ADTO)Θ , with a subset of the IPC objects ℑ,
providing object-orientated programming features with method access.
Though it is a traditional imperative programming language, it features true
parallel programming both in control and data path, explicitly modelled by the
programmer.
Processes provide parallelism on control path level, whereby arbitrary nested
bounded blocks inside processes provide parallelism on data path level.
There are two extended interfaces connecting the behavioural programming
model to external hardware objects: 1. using hardware signals and
component structures, or 2. using the External Module Interface (EMI).
EMI provides two interface levels: A. the high-level ADTO level with
method-based object access, and B. on low-level a behavioural hardware
description using a script language extended subset of VHDL. For example.
all IPC objects are modelled this way. User objects can be added, too.
There are different hierarchy levels provided by the programming model
(shown in graph 1):

1. The structural module (Module-S) level provides composition of be-
havioural modules (circuits) to a system-on-chip (SoC) design.

2. The behavioural module (Module-B) level contains processes and
global objects. A toplevel port defines the interface of the circuit to the
outside world.

3. The process level contains a finite-state-machine, computational units,
and local objects.

4. The abstract object Module-O, belonging both to process and be-
havioural module level. It defines and implements abstract data types
objects and the provided method set υ.

A module represents a circuit component with an associated toplevel inter-
face hardware port. At least the system clock and reset signals are connect-
ed. Some storage objects can be exported with interconnect signals
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Behavioural Programming Language ConPro

appearing in the toplevel port. Some abstract objects, for example communi-
cation links, have internal input-output signals routed to the toplevel port. A
system-on-chip (SoC) can be composed of behavioural module component
instantiations using a structural module environment. Either all toplevel port
signals of each subcomponent or only a subset is routed to the SoC-toplevel-
port. In the latter case, there is an interconnection component internally con-
necting module signals (which can be automatically generated using map
instructions).

G 1: Different design hierarchy levels and object visibilities.

Toplevel-Port

Circuit

Module-S

Toplevel-Port

Circuit

Module-B

Toplevel-Port

Circuit

Module-B

IC

Process Process Object

IC

Process Process Object

EMI

Object

Module-O

Object Object

A process environment consists of a unique process name, local object def-
initions and process instructions. Single processes or an array of processes
can be defined using the process environment. Each process executes the
associated instruction sequence independently.
Objects can be defined within processes with local visibility, or globally on
module level. The set of object types α contains storage ℜ, signals ℘, and
abstract objects Θ={ℑ,D,E}: α={ℜ,Θ}. The set D contains data computa-
tional objects, for example, random generators and DSP units, and the set E
contains external communication objects.
Data storage can be implemented with single registers or with variables
sharing one or more memory blocks. Choosing one of these object types is a
contraint for synthesis, not a suggestion (in contrast to software program-
ming). Registers provide concurrent-read-exclusive-write (CREW) access
behaviour, whereby variables provide only exclusive-read-exclusive-write ac-
cess behaviour (EREW). Both data storage types can be defined locally on
process level or globally on module level. Both registers and variables are
true bit-scaled , that means, any width ranging from 1 to 64 bit can be used.
In the case of variable storage, the data width of the associated memory
block is scaled to the widest object stored in this block. Fragmented variable
objects are supported.
A strong typed expression model is provided. There is a set of core data
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Behavioural Programming Language ConPro

types: β={logic, int, bool, char}. Product types, both structures and
arrays, can be defined to provide user-defined types.
A structure type binds different named elements with defined data types β to
a new data type T. The structure type must be defined before an object of this
type can be defined: type T: { E1: β1; E2: β2; ...}.

The object type α (register, variable, or signal) is associated during object
definition. For each structure element a separate storage element is created.
Array definitions consist of object and cell data type specifications in the form:
array A: α[N] of β. Arrays can be accessed dynamically selected. In the
case of register or object arrays, index-selected multiplexer and demultiplexer
are created. Multi-dimensional storage arrays and arrays of abstract objects
including processes are supported.
Example 1 shows some object definitions.

1: ◆ Storage Objects ◆
2: reg x,y: int[8]; Defines registers

3: block ram1; Defines a block RAM

4: var a,b,c: int[10] in ram1; Defines variables in RAM
5: array mat1: reg[10] of int[23]; Defines an array

6: array mat2: var[10] of int[8] in ram1;

7: type complex: {

8: real: int[16];

9: imag: int[16];

10: }; Defines a new data type

11: reg zcmp: complex; Defines registers of this type

12: process xyz:

13: begin

14: reg t: int[8]; Local data storage

15: array ta: var[8] of int[8];

16: end; Defines a new process

17: ◆ Abstract Objects ◆
18: open Mutex; Opens Mutex module required below

19: object mu1: mutex; Defines ADTO

E 1: Examples of different object definitions distinguished by their
object and data type.

1: process p1:

2: begin

3: a←1, b←3, z←x-1; Bounded instruction block

4: ⇔
5: begin

6: a←1;
7: b←3;
8: z←x-1;
9: end with bind; Bounded instruction block, too

10: x←(a+b)*4;
11: end;
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Behavioural Programming Language ConPro

12: process p2:

13: begin

14: a←1;
15: b←3;
16: z←x-1;

17: x←(a+b)*4;

18: end with schedule="basicblock";

E 2: Example of assignments. Lines 3 and 5..9 (parameterized
block) reflect equivalent syntax for concurrent statements with identi -
cal behaviour. Automatic basicblock scheduling is applied to the second
process (parameterized process body block).

Expressions contain data storage objects, constants, and operators.
Supported are all common arithmetic, Boolean (logical), and relational
operators. Most of them are directly mapped to hardware behaviour
level (VHDL operators). Initially, assignments to data storage objects
are scheduled in one time step, and the order of a sequence of assign-
ments is preserved. A sequence of data-independent assignments can
be bound to one time unit either explicitly by the programmer (bounded
block), or implicitly evaluated by the basicblock scheduler (preserving
data dependencies, but violating sequence order). A semicolon (with-
out further scheduling constraints) schedules an assignment, whereby
a colon-separated list binds assignments to one time unit, shown in ex-
ample 3, e.g. RTL scheduling originally proposed by Barbacci BAR73 .
There are different expression models which can be set on block level
using the parameter: expr={"flat","binary","shared"}. The flat
model maps operators of a (nested) expression 1:1 to hardware blocks
(no shared resources), the binary mode splits nested expressions into
single two-operand subexpressions using temporary registers, improv-
ing combinational path delay, and the shared model provides resource
sharing of functional operators using ALUs.

Control Statements There are conditional branches, both Boolean and
multivalue branching, conditional, unconditional and counting loops,
conditional blocking wait-for statements, function calls, and exceptions.
Exceptions are abstract (symbolic) signals which can be raised any-
where inside a process, and caught either inside the process where the
signal is raised, or outside from any other process calling this respec-
tive process. Exceptions are propagated accross process boundaries.
Exceptions are the only structural way to leave a control environment,
there is no break, continue, or goto statement.

Functions User-defined functions can be implemented in two different
ways: 1. as inlined not-shared function macros and 2. as shared func-
tion blocks. In the first case, the function call is replaced by all function
instructions, and function parameters are replaced by their respective
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arguments. In the second case, a function is modelled using the de-
scribed process with an additional function control block containing a
function call lock bound to an access scheduler and registers required
for passing function arguments to parameters and returning results.
Only call-by-value arguments of atomic objects can be used. The re-
maining functionality is provided by the underlying process model using
the call method. Figure 4 shows the system architecture of a shared
function block.
Functions are restricted to non-recursive calls due to a missing stack
environment.

Example 3 shows a complete ConPro design. It is the implementation of the
dining philosophers’ problem using counting semaphores demonstrating re-
source sharing and scheduling. The story is: five philosophers sit around a
circular table. Each philosopher spends his life alternately thinking and eat-
ing. In the center of the table is a large platter of spaghetti. Each philosopher
needs two forks two eat. But there are only five forks for all. One fork is
placed between each pair of philosophers, and they agree that each will use
only the forks to the immeadiate left and right AND00, here implemented with
a semaphore array fork, defined on line 17. The depth parameter specifies
the datawidth of the semaphore counter. A register is defined in line 5, and
an array of registers in line 7. Though each semaphore is an independent
object (in hardware, too), the array can be accessed with dynamic selectors
(register, variable), shown for example in lines 21-22 inside a for-loop.
The read ports of the shared registers eating and thinking are exported to
the module toplevel port (SoC hardware port level). The design consists of
seven processes. The philosophers are implemented with the process array
philosopher.
A user-defined structure type is defined in lines 8-14, and finally a register of
this type is created in line 15.
A mutex num_eat_lock, defined in line 6, is used to protect the incremental
and decremental operation of the shared counter num_eat.
The event ev assures the same starting point for all philosopher processes
(synchronization boundary).

1: open Core, Process, Semaphore, System, Event, Mutex;
2: object sys: system;
3: sys.simu_cycles (500);

4: object ev: event;
5: reg num_eat: int[8];

6: object num_eat_lock: mutex;
7: array eating,thinking: reg[5] of logic;
8: type stat : {
9: phil1: int[8];

10: phil2: int[8];

11: phil3: int[8];

12: phil4: int[8];

13: phil5: int[8];
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14: };

15: reg stats: stat;

16:

17: array fork: object semaphore[5] with depth=8 and scheduler="fifo";

18:

19: process init:
20: begin

21: for i = 0 to 4 do
22: fork.[i].init (1);

23: ev.init ();

24: end;

25:

26: function eat(n: natural):
27: begin

28: num_eat_lock.lock ();

29: num_eat ← num_eat + 1;

30: num_eat_lock.unlock ();

31: match n with
32: begin

33: when 1: stats.phil1 ← stats.phil1 + 1;

34: when 2: stats.phil2 ← stats.phil2 + 1;

35: when 3: stats.phil3 ← stats.phil3 + 1;

36: when 4: stats.phil4 ← stats.phil4 + 1;

37: when 5: stats.phil5 ← stats.phil5 + 1;

38: end;

39: eating.[n] ← 1,

40: thinking.[n] ← 0;

41: wait for 5;

42: eating.[n] ← 0,

43: thinking.[n] ← 1;

44: num_eat_lock.lock ();

45: num_eat ← num_eat - 1;

46: num_eat_lock.unlock ();

47: end with inline;

48:

49: array philosopher: process[5] of
50: begin

51: if # < 4 then
52: begin

53: ev.await ();

54: always do
55: begin

56: � get left fork then right

57: fork.[#].down ();

58: fork.[#+1].down ();

59: eat (#);

60: fork.[#].up ();

61: fork.[#+1].up ();

62: end;

63: end

64: else
65: begin

66: always do
67: begin

68: � get right fork then left

69: fork.[4].down ();
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70: fork.[0].down ();

71: eat (#);

72: fork.[4].up ();

73: fork.[0].up ();

74: end;

75: end;

76: end;

77:

78: process main:
79: begin

80: init.call ();

81: for i = 0 to 4 do
82: begin

83: philosopher.[i].start ();

84: end;

85: ev.wakeup ();

86: end;

87:

88: export eating,thinking,num_eat,stats;

E 3: A complete ConPro example: the dininig philosopher problem.
This implementation demonstrates resource sharing and synchronized
access of shared resources using mutex and semaphore objects.

Synthesis Gate-level synthesis with a standard cell technology using
Leonardo Spectrum and SXLIB standard-cell library results in a circuit
with 3919 gates, 235 D-flip-flops, and an estimated longest combina-
tional path of 17 ns (55 MHz maximal clock frequency). The imple-
mentation of the semaphore array requires 1733 gates and 70 register,
the event requires only 122 gates and 10 register. Each loop iteration
of process philosopher up to the and from the eat function requires
each 6 clock cycles to complete if all shared resources are immediately
granted.
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4 Abstract Objects and the External Module Interface

Abstract data type objects provide a method based interface to functional
and operational hardware blocks, part of the SoC-design. They can be ac-
cessed concurrently, requiring an access scheduler serializing and guarding
the access to the particular object. A process trying to access the object us-
ing a method is blocked (suspended) untill the resource is available and the
request was serviced.
Beneath a set of standard objects required for interprocess-communication,
the programmer/user can define its own objects and methods using the Ex-
ternal Module Interface (EMI).
The EMI defines the object, the available methods and their programming
interface, the access of the object and the implementation on hardware be-
haviour level, at least the access scheduler.
Example 4 shows the definition and implementation of the mutex object. The
EMI is divided into different sections.
The EMI language is a combination of a script language (for example lists and
list operations) and a subset of VHDL. There are parameter lists, for example
the list of all processes $P accessing the object, or only processes using a
particular method M ($P.M is a subset of $P). Other core parameters like the
object name $O or the clock name $CLK get a value during synthesis.

Paramter This section defines local parameters evaluated during syn-
thesis.

Methods The methods section defines the interface of the provided
methods applied to the object.

Assert During synthesis sanity checks can be performed (optional).

Interface The interface section defines interconnect hardware signals
required for the RTL implementation of each ConPro process access-
ing this object.

Mapping Signals rqeuired for access of the object (defined in interface
section) must be mapped from local process to global module level (in
terms of VHDL entity ports and port mappings)

Access This section defines for the object signal access during method
call (RTL level).

Signals The signal section defines hardware signals required for the im-
plementation of the object.

Process One or more hardware processes required for object implemen-
tation (functional/operational block, at least the scheduler) can be de-
fined and modeled using the process section using a VHDL style lan-
guage.

1: #parameter

2: begin

3: $scheduler["static","fifo"] <= "static";
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4: end;

5: �
6: � Supported object methods

7: �

8: #methods
9: begin

10: init();

11: lock();

12: unlock();

13: end;

14: #assert
15: begin

16: size($P.init) >= 1;

17: size($P.lock) >= 1;

18: size($P.unlock) >= 1;

19: end;

20: �
21: � Interface for processes accessing methods

22: � of object (process port, local process context)

23: �

24: #interface
25: begin

26: foreach $p in $P.init do

27: begin

28: signal MUTEX_$O_INIT: out std_logic;

29: end;

30: foreach $p in $P.lock do

31: begin

32: signal MUTEX_$O_LOCK: out std_logic;

33: end;

34: foreach $p in $P.unlock do

35: begin

36: signal MUTEX_$O_UNLOCK: out std_logic;

37: end;

38: foreach $p in $P do

39: begin

40: signal MUTEX_$O_GD: in std_logic;

41: end;

42: end;

43: �
44: � Process mapping of object signals (global module context)

45: �
46: #mapping

47: begin

48: foreach $p in $P.init do

49: begin

50: MUTEX_$O_INIT => MUTEX_$O_$p_INIT;

51: end;

52: foreach $p in $P.lock do

53: begin

54: MUTEX_$O_LOCK => MUTEX_$O_$p_LOCK;

55: end;

56: foreach $p in $P.unlock do

57: begin

58: MUTEX_$O_UNLOCK => MUTEX_$O_$p_UNLOCK;

59: end;
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60: foreach $p in $P do

61: begin

62: MUTEX_$O_GD => MUTEX_$O_$p_GD;

63: end;

64: end;

65: �
66: � Object method access (local process context)

67: � for each method ...

68: �

69: init: #access
70: begin

71: #data
72: begin

73: MUTEX_$O_INIT <= MUTEX_$O_GD when $ACC else ’0’;

74: end;

75: #control
76: begin

77: wait for MUTEX_$O_GD = ’0’;

78: end;

79: end;

80: lock: #access
81: begin

82: #data
83: begin

84: MUTEX_$O_LOCK <= MUTEX_$O_GD when $ACC else ’0’;

85: end;

86: #control
87: begin

88: wait for MUTEX_$O_GD = ’0’;

89: end;

90: end;

91: unlock: #access
92: begin

93: #data
94: begin

95: MUTEX_$O_UNLOCK <= MUTEX_$O_GD when $ACC else ’0’;

96: end;

97: #control
98: begin

99: wait for MUTEX_$O_GD = ’0’;

100: end;

101: end;

102: �
103: � Implementation (global module context)

104: � VHDL signals required, both for mapping processes

105: � and auxilliary signals.

106: �
107: #signals
108: begin

109: �
110: � Implementation signals

111: �
112: foreach $p in $P.lock do

113: begin

114: signal MUTEX_$O_$p_LOCK: std_logic;

115: end;
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116: foreach $p in $P.unlock do

117: begin

118: signal MUTEX_$O_$p_UNLOCK: std_logic;

119: end;

120: foreach $p in $P.init do

121: begin

122: signal MUTEX_$O_$p_INIT: std_logic;

123: end;

124: foreach $p in $P do

125: begin

126: signal MUTEX_$O_$p_GD: std_logic;

127: signal MUTEX_$O_$p_LOCKed: std_logic;

128: end;

129: end;

130: #signals ($scheduler="static")
131: begin

132: signal MUTEX_$O_LOCKed: std_logic;

133: end;

134: �
135: � Implementation (global module context)

136: � Scheduler process: access serialization

137: �
138: MUTEX_$O_SCHED: #process ($scheduler="static" and $fsm="moore")
139: begin

140: if $CLK then
141: begin

142: if $RES then
143: begin

144: MUTEX_$O_LOCKed <= ’0’;

145: foreach $p in $P do

146: begin

147: MUTEX_$O_$p_GD <= ’1’;

148: end;

149: foreach $p in $P.lock do

150: begin

151: MUTEX_$O_$p_LOCKed <= ’0’;

152: end;

153: end

154: else
155: begin

156: foreach $p in $P do

157: begin

158: MUTEX_$O_$p_GD <= ’1’;

159: end;

160: sequence

161: begin

162: foreach $p in $P.init do

163: begin

164: if MUTEX_$O_$p_INIT = ’1’ then

165: begin

166: MUTEX_$O_LOCKed <= ’0’;

167: MUTEX_$O_$p_GD <= ’0’;

168: foreach $l in $P.lock do
169: begin

170: if MUTEX_$O_$l_LOCKed = ’1’ then
171: begin
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172: MUTEX_$O_$l_LOCKed <= ’0’;

173: MUTEX_$O_$l_GD <= ’0’;

174: end;

175: end;

176: end;

177: end;

178: foreach $p in $P.lock do

179: begin

180: if MUTEX_$O_$p_LOCK = ’1’ and MUTEX_$O_LOCKed = ’0’ then

181: begin

182: MUTEX_$O_LOCKed <= ’1’;

183: MUTEX_$O_$p_LOCKed <= ’1’;

184: MUTEX_$O_$p_GD <= ’0’;

185: end;

186: end;

187: foreach $p in $P.unlock do

188: begin

189: if MUTEX_$O_$p_UNLOCK = ’1’ then

190: begin

191: MUTEX_$O_LOCKed <= ’0’;

192: MUTEX_$O_$p_LOCKed <= ’0’;

193: MUTEX_$O_$p_GD <= ’0’;

194: end;

195: end;

196: end;

197: end;

198: end;

199: end;

200:

E 4: Extract from the mutex EMI implementation.

Finally, objects can be created and used within ConPro modules and pro-
cesses, shown in example 5. A mutex is used to guard a global counter x,
though the access of this register is implicitly guarded, the expression x← x
+ 1 is not mutual, and must be guarded explicitly to guarantee data consis-
tency.

1: open Core; open Process; open Mutex;

2: object mu_x: mutex with schedule="fifo";

3: reg x: int[6];

4: process p1:

5: begin

6: for i = 1 to 10 do
7: begin

8: mu_x.lock (); x ← x + 1; mu_x.unlock();

9: end;

10: end;

11: process p2:

12: begin

13: for i = 1 to 10 do
14: begin
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15: mu_x.lock (); x ← x - 1; mu_x.unlock();

16: end;

17: end;

18: process main:

19: begin

20: mu_x.init (); x ← 0;

21: p1.start (); p2.start ();

22: end;

E 5: Abstract Data Type Object creation and method access inside
ConPro processes.
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5 RTL Architecture

Each high-level process is mapped to a FSM and RTL, already shown in
figure 2. Process instructions are mapped to states of the FSM. Figure 3
shows the process system interconnect using signals. Access of objects is
request-based and requires a request signal fed into a mutex-guarded access
scheduler, responsible for serialization of concurrent access by different pro-
cesses. A guard signal is read by the process FSM, providing a simple and
efficient two-signal handshake (REQ↔ACT). Each shared object implements
an access scheduler block, consisting of an FSM, providing the interface be-
tween processes accessing a resource and the resource itself.
The process block interface and system interconnect shown in figure 3 re-
quire different signals for the control and data path. Shared objects can be
connected to different processes, requiring control signals for atomic access
(called guards). All processes and objects are sourced by one system clock
and reset signal, thus all functional blocks operate synchronously.

F 3: The process block interface and system interconnect.

Two different scheduling policies are supported: a simple static priority
scheduler and a dynamic FIFO-based scheduler. The first one assigns each
process a static priority during compile time. The resource is scheduled in pri-
ority order. This can lead to race conditions, whereby one or some processes
always get access to the resource, and others never. The dynamic scheduler
stores process identifiers in a queue and guarantees resource access in the
order the requests arrived.
Local objects are directly implemented in RTL of a process, whereby global
shared objects are implemented in separated hardware blocks, connected
to processes using signals and to external circuit signals (at least clock and
reset). The hardware architecture of a global object consists of the access
scheduler block explained above, and the implementation blocks of this ob-
ject, for example a RAM or communication transmitter. The access scheduler
is the interface between the processes (accessing this object) and the imple-
mentation blocks (processing the object request).
The structure of the data path depends of chosen expression and tempo-
rary register model (shared versa exclusive), shown in graphs 2 and 3. The
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structure of the control path depends on instruction binding and scheduling
using bounded blocks and different scheduling strategies, on loop parame-
ters (loop-unrolling), and finally on optimization.

G 2: Comparison of allocation in different expression models: flat
(left) versa shared (right). Instruction sequence: x←a+b;y←x+c;z←y+d.
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G 3: Comparison of allocation in different expression models: flat
(left) versa shared (right) and shared temporary register model. Instruc -
tion: z←a+b+c+d. Additionally the binary expression model is shown in
the middle subgraph.
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Figure 4 shows the system architecture of a shared function block.
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F 4: Shared function blocks are implemented with a process block
and a function call scheduler. Only some of the interconnect signals are
displayed.
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6 Synthesis

The synthesis process is a traditional software compiler flow. The synthesis
of RTL circuits from high-level imperative programs passes different phases:

1. First, the source code is parsed and analyzed . For each process, an
abstract syntax graph preserving complex statements is built. Global
and local objects are stored in symbol tables (one globally for module
level, and one for each process level).

First optimizations are performed on the process instruction graph, for
example, constant folding and dead object checking, and elimination of
those objects and superfluous statements.

Several program transformations (based on rules and pattern match-
ing) are performed, for example inference of temporary expressions
and registers.

A symbolic source code analysis method, called reference stack
scheduler KU92, examines (local) data storage objects and their his-
tory in expressions. The reference stack scheduler analyzes the eval-
uation of data storage expressions with an expression stack, one for
each object.

The reference stack transforms a sequence of storage assignments
with expression E κ={Θ←E1,Θ←E2,...} of a particular storage object
Θ to a sequence of immutable and unique symbolic variables Θi:
{Θ1←E1,Θ2←E2,...}. The aim is to reduce statements (using backward
substitution and constant folding) and superfluous storage. The refer-
ence stack scheduler has an ALAP scheduling behaviour.

2. After analysis and optimization on instruction graph level, these com-
plex instructions (ranging from expressions to loops) are transformed
into a linear list of µCode instructions, shown in table 2. The µCode
level is an intermediate representation of the program code, used in
software compilers, too, though no architecture-specific assumption is
made on this level, except constraints to the control flow. The µCode
can be exported and imported, too. This feature enables a different en-
try level for other programming language frontends, for example, func-
tional languages SHA98.

This intermediate representation allows more fine-grained optimiza-
tion, allocation, and scheduling. The transformation from syntax graph
to µCode infers auxiliary instructions and register (suppose for-loops
which require initialization, conditional branching, and loop-counter
statements).

Parallelism on data path level is provided by the bind instruction which
binds N instructions to one FSM state (one time unit).

The transformation is based on a set of rules χκ→µ, consisting of de-
fault rules and user-selectable rules (constrainted rules). This is the
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first phase of architecture synthesis by replacing the paradigms of the
source language with paradigms of the target machine, in this case a
FSM with statements mapped to states and expressions mapped to the
data path (RTL). Additionally, the first phase of allocation is performed
here.

Data path concurrency is explored either by user-specified bounded
blocks or by the basicblock scheduler . This scheduler partitions the
µCode instructions into basicblocks. These blocks have only one con-
trol path entry at the top and one exit at the tail. The instructions of
one basicblock (called major block) are further partitioned into minor
blocks (containing at least one instruction or a bounded block). From
these minor blocks data dependency graphs (DDG) are built. Finally
the scheduler selects data-independent instructions from these DDGs
with ASAP behaviour.

3. After the first synthesis level, the intermediate µCode is mapped to
an abstract state graph RTL using a set of rules χµ→Γ∆, too, again
consisting of default and user-selectable rules. A final conversion step
emits VHDL code. This design choice provides the possibility to add
other/new hardware languages, like Verilog, without changing the main
synthesis path.

The rule set determines resource allocation of temporary registers and
functional blocks providing different allocation strategies: shared versa
non-shared objects and flat versa shared functional operators and in-
ference of temporary registers. Shared registers and functional blocks
introduce signal selectors inside the data path.

RTL is partitioned into a state machine FSM (two hardware blocks, one
transitional implementing the state register and one combinational im-
plementing the state switch network), providing the control path, and
the data path (consisting of transitional and combinational hardware
blocks, implementing functional operators, access of global resources
and local registers).

Using the default set of rules, each µCode instruction (except those
bounded) is mapped to one state of the FSM requiring one time unit (≥
1 clock cycle, depending on object guards). Scheduling is mainly de-
termined by the rule set χκ→µ, rather by χµ→Γ∆.
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Mnemonics Descriptions Effect

move(dst,src) Data transfer ∆:dst←src

expr(dst,op1,op,op2)Data transfer with
binary expression
evaluation

∆:dst←op(op1,op2)

jump(label) Unconditional branch Γ:σ←σ(label)

falsejump(cond,label)Conditional branch Γ:σ(label)|¬cond

bind(n) Bind n following
instructions to a
parallel execution
block

{µ1,µ2,...}→σ

fun

obj.meth(args)

Abstract Object
Method Call

Γ:σ|obj

∆:paramsobj↔args

nop No operation place
holder, mostly a
result of optimization

-

T 2: µ-Code instructions and their effect on data- and control path (∆,
Γ).

Though no traditional iterative scheduling and allocation strategies are used
in this software compiler flow, the non-iterative constraint selective rule based
synthesis approach provides inherent scheduling and allocation with strong
impact from different optimizers. Summarized there are differenet levels of
scheduling and allocation:

Reference Stack Scheduler

Operates on syntax graph level and tries to reduce statements, func-
tional operators, and storage, and has impact on scheduling and allo-
cation.

Basicblock Scheduler

Operates on intermediate µCode level and tries to reduce operational
time steps of statements and has only impact on scheduling.

Expression Scheduler

To meet timing constraints, mainly clock-driven, complex, and nested
flat expressions must be partitioned into subexpressions using tempo-
rary registers and expanded scheduling. This scheduler has impact
both on scheduling and allocation.

Optimizer

Classical constant folding, dead code and object elimination, and loop/
branch-invariant code transformations further reduce time steps and
resources (operators and storage).
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Synthesis Rules

But finally the largest impact on scheduling and allocation comes from
the set of synthesis rules χ=χκ→µ∪χµ→Γ∆.

The ConPro synthesis tool was entirely implemented using the functional lan-
guage ML (OCaML, about 70000 source code lines).
Figure 5 summarizes the synthesis flow. During the synthesis process SYN-
TAX →µCODE →FSM-STATES →RTL-VHDL , initial block structures from
high level control environments (for example branches) are kept, together
with source code informations.

F 5: This figure gives an overview about the ConPro synthesis pro -
cess, from source code to VHDL RTL.
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7 Case Study: A Robot Actuator Network

This case study is part of an ongoing project called ModACT founded by
ISIS. Goal of the project is the design and development of a modular robot
actuator with a decentralized overall control architecture. Several actuators
and sensors are connected in a network. Apart from system architecture and
design issues, modern microsystem technologies and integration are related
work in this project. Thus, miniaturization and low power design must be sat-
isfied. The high density sensor and actuator network consist of independent
nodes, each equipped with: 1. data processing, 2. control and 3. communi-
cation blocks SSI10. The functionality of each node is implemented entirely
in register-transfer-digital-logic using FPGAs (Xilinx, SpartanIII-1000/500).

An actuator node consists of: 1. a brushless DC-motor, 2. a harmonic-
drive-gear, 3. highly miniaturized electronics performing data process-
ing and control, 4. different sensors for angular position, current and
temperature, and finally 5. communication.

A sensor node consists of: 1. a sensor (for example a force/pressure
sensor), 2. electronics, and 3. communication.

The ModuACT actuator controller was designed with the multi-process pro-
gramm model explained in this article and partitioned into 46 behavioural
processes and 9 shared functions. Figure 6, 8 and 9 show most of the
processes and their interconnection using IPC, mainly queues. The SoC-
hardware-design can be synthesized for FPGA and ASIC technologies.

Control Design

Figure 6 shows the main parts of the actuator controller consisting of data ac-
quisition (component ADC), data processing performed by process service,
a reactive loop activated periodically by the timer service_timer (time pe-
riod can be set between 10 µs and 10ms). The controller uses a register
file consisting of 256 registers (implemented with a scheduled RAM block),
and each cell has a datawidth of 12 bit. Each register is assigned to a spe-
cial purpose, for example PID controller constants, actual measuring results
(current, position, temperature and many more).
The position controller is a traditional PID calculator, activated periodically
from timer service_timer, too.
The brushless DC motor requires a three-phase pattern generator to supply
the phase-synchronous driving voltages (approximated sinus waves). Each
motor coil voltage is generated by PWM generators, performed with process
pwm_gen.[0] to pwm_gen.[2]. The PWM period time is about 30 µs, acti-
vated by the timer pwm_timer. Each PWM generator process is synchronized
by the process pat_update with actual data, getting itself data from the main
pattern generator process pat. This process also linearizes the PWM ampli-
tudes (electronic H-bridge compensation). Data is passed by global shared
registers. The sinus wave period is different from the PWM period, therefore
the process pat_syncer activates the pattern generator.
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Case Study: A Robot Actuator Network

F 6: ModuACT architecture, part 1: control and data processing.

The pattern geneator requires feedback from rotor position of the motor,
detected by three magnetic hall sensors, whose data is processed by pro-
cesses hall and speed. They are activated by timers hall_timer (1 µs)
and speed_timer (10 µs), respectively.

Communication Design: SLIP

Communication is an essential part of a complex robot systems, consisting
of several actuators and sensor nodes. The Scalable Local Intranet Proto-
col (SLIP) and a communication controller design was developed. The goals
were: 1. low power design and efficiency, 2. low resource design, SoC capa-
ble, and 3. adaptable to local communication requirements. SLIP is scalable
with respect to network size (address size class ASC), maximal data payload
(data size class DSC) and the network topology dimension size (address di-
mension class ADC).
Network nodes are connected using (serial) point-to-point links, and they
are arranged along different metric axes of different geometrical dimen-
sions: a one dimensional network (ADC=1) implements chains and rings,
a two-dimensional network (ADC=2) can implement mesh grids, a three-
dimensional (ADC=3) can implement cubes, and so on. Both regular (com-
plete) and irregular networks (with missing nodes) are supported for each
dimension.
The main problem in message-based communciation is routing and thus
addressing of nodes. Absolute and unique addressing of nodes in a high-
density sensor-actuator-network is not suitable. An alternative routing strat-
egy is delta-distance routing, used by SLIP. A delta vector ∆ specifies the way

[CON10]
Page 32

Reference: Stefan Bosse, Synthesis of Parallel and System-on-Chip Designs With Behavioural High-Level 
Hardware-Synthesis Using Communicating Sequential Processes and the ConPro-Framework
Technical Paper, BSSLAB, Bremen 2010 



Case Study: A Robot Actuator Network

from the source to a destination node.
An example network (ADC=2) with five nodes connected by bidirectional
point-to-point links is shown in figure 7. Suppose a message should be sent
from Node 1 to Node 5. The relative distance is ∆=(2,-1).

F 7: An example network (ADC=2) with five nodes connected by
bidirectional point-to-point links.

A message packet contains a header descriptor specifying the type of the
packet and the scalable parameters ASC, DSC and ADC.
A packet descriptor follows the header descriptor, containing: the actual
delta-vector ∆, the original delta-vector ∆1, a backward-propagation vector
Γ, a preferred routing direction ω, an application layer π, and the length of the
following data part.
Each time a packet is forwarded (routed) in some direction, the delta-vector
is decreased in the respective dimension entry. For example, routing in x-
direction results in: ∆1←∆1-1.
A message has reached the destination if ∆=0 and can be delivered to the
application layer π.
There are different smart routing rules, applied in order showed below untill
the packet can be routed (or discarded):

route_normal This is the main routing rule with the goal to decrease
the distance from the actual node to the destination node, finding the
shortest path: min|∆|.
Each i-dimension of the ∆-vector is checked: if is ∆i> 0, and there is a
link in i-direction, route packet with ∆i←∆i-1, else if ∆i< 0, and there is
a link in -i-direction, route packet with ∆i←∆i+1, else try next rule. The
starting dimension is specified in the packet descriptor.

route_opposite Try to send the packet on any other link (but not the
direction from which the packet has arrived), resulting in a partial in-
crease of distance. The opposite travel is marked in the Γ-entry.

route_backward The packet is trapped, no further way to route the
packet. Send back the packet on the direction from wwhich it has ar-
rived. The backward travel is marked in the Γ-entry.
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For example, the path N1→N5 can be directly routed using normal routing,
first x-direction, finally y-direction. Now assume the link L35 is down, and the
packet arrives at node N3, but must be send back to node N2, to change the
routing direction, and finally arrives N5 over link L45. The above set of smart
routing rules solve such backend-trap problems, supporting irregular network
topologies and robustness against link failures. The way back from N5→N1
requires opposite routing at node N4!
The SLIP protocol stack was implemented for ADC=2, ASC=8, and DSC=8,
using a partition of 21 processes and 4 functions. Queues are used to sup-
ply buffering and synchronized data exchange between processes. Packet
structures and packet data are managed in different pools (uisng scheduled
RAM arrays).
Figures 8 and 9 show the architecture of the protocol stack. The application
layer is implemented with process proto, providing an RPC-based interface
to the controller register file.

F 8: ModuACT architecture, part 2: communication and SLIP proto -
col stack.

Incoming data (from a serial link link.[i] with i=1..4) is stored in
the first data queue link_rx.[i]. The data is parsed by the pro-
cess link_rx_proc.[i], reading from the data queue. The process
link_tmo.[i] provides timeout management. If a packet was successfully
received, the packet header is stored in the queue pkt_proc_queue. Packet
are processed by the process pkt_process, which tries to route the packet
using the above routing rules (implemented in three function blocks) or de-
livers the packet to the application layer. Outgoing packets are processed
also by pkt_process. The routing functions pass the packet to the appropi-
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ate queue pkt_send_queue.[i], wich is processed by the packet encoder
link_tx_proc.[i]. This process sends the data stream to the link trans-
mitter.

F 9: ModuACT architecture, part 3: communication link interface.

Synthesis and Results

The full design consisting of the actuator controller, data processing and com-
munication was synthesized for two target technologies using two different
design flows: 1. XilinX-FPGA, Spartan III-1000, Xilinx-ISE synthesis with
place & route backends, and 2. standard-cell-library ASIC using the lsi_10k
library and the design compiler from Synopsys. The second one was only
used to get a good area estimation of the SoC-design.

Table 3 shows results of the FPGA synthesis. Though a high complex design
was implemented, the design fits in a medium sized FPGA. The FPGA re-
sources are fully mapped, but the overall performance (longest comb. path)
is still high (up to 60 MHz clock frequency). Table 4 shows results of the
ASIC synthesis. This design requires about 300k gates area. In contrast one
microprocessor core (for example Leon-2, Sparc V8, using Virtex XCV800
FPGA) requires about 600k gates and achieves only 20 MHz clock frequency
LEO06.

Table 5 shows synthesis results of some selected processes. Though FSMs
have a high number of states, the required area and register count is still low.

[CON10]
Page 35

Reference: Stefan Bosse, Synthesis of Parallel and System-on-Chip Designs With Behavioural High-Level 
Hardware-Synthesis Using Communicating Sequential Processes and the ConPro-Framework
Technical Paper, BSSLAB, Bremen 2010 



Case Study: A Robot Actuator Network

Parameter Value

number of source code lines
(ConPro)

3381

number of synthesized VHDL
lines

36531

total eq. gate count 1433516

longest path time 15 ns (66 MHz clock)

number of 4-input LUTs 13448 (15360)

number of block RAMs 20 (24)

number of FSMs 48
number of flip-flops 3666

T 3: Summarization of VHDL synthesis results of robot joint con -
troller using XIlinx ISE 9.2 and a XIlinx Spartan-III FPGA

Parameter Value

number of cells 71870
number of nets 81624
combinatorial area 118829 eq. gates

non-comb. area 188940 eq. gates

total area 307769 eq. gates

T 4: Summarization of VHDL synthesis results of robot joint con -
troller using Synopsys Design Compiler and the lsi_10k standard-cell li -
brary.

Process States Area Register

pkt_process 32 587 42

FUN_route_normal 72 1269 57

FUN_route_opposite 55 879 31

FUN_route_backward 86 1244 34

FUN_sin 33 2318 71

pid 19 3723 86

proto 135 3404 136

service 90 2438 104

T 5: Summarization of synthesis results of some selected processes.
The FSM state number is calculated by ConPro, area in equivalent gates
and registers by the design compiler (lsi_10k library).
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8 Conclusion and Outlook

In this paper, a multi-process programming model was presented for SoC de-
sign to explore concurrency required in complex systems like Cyber Physical
Systems for control, data processing and communciation.
A new high-level language and a synthesis compiler ConPro used for com-
plex circuit and SoC design was presented, closing the gap between soft-
ware and hardware level. The programming language provides an algo-
rithmic entry level with additional features for synthesis control concerning
scheduling and allocation. True bit-scaled data types are supported. The
programming model is based on a concurrent multi-process architecture with
interprocess-communication primitives, providing coarse-grained parallelism
explicitly modelled. Fine-grained parallelism is supported on data path level
and can be explored by the synthesis tool, too.
The synthesis process maps process instructions to states of an FSM and
RTL on hardware behaviour level with good performance and resource cov-
erage, using a user selectable set of rules. VLSI design with about 1M gates
and beyond can be designed. Synthesis results show good performance of
the compiler and good matching results to target technologies like FPGAs
compared with traditional microprocessor designs. Though a traditional soft-
ware compiler design flow is used, the optimizers can reach well-optimized
circuit designs. Main application fields are reactive systems, rather than func-
tional and pipelined systems.
The programming-model and synthesis approach was proved with a complex
robot actuator design.
In the future, pipelining of the data path must be supported to provide high
performance synthesis of functional units.
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